基于多重假设的视频压缩感知分层重建
DOI:
作者:
作者单位:

广西大学计算机与电子信息学院,广西大学计算机与电子信息学院,广西大学计算机与电子信息学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Multi-hypothesis based Hierarchical Reconstruction for Compressed Video Sensing
Author:
Affiliation:

School of Computer and Electronic Information,Guangxi University,School of Computer and Electronic Information,Guangxi University,School of Computer and Electronic Information,Guangxi University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了改进视频压缩感知方案的性能,提出了一种基于多重假设的视频压缩感知分层重建方案。该重建方案以图像组为单位进行,首先独立重建关键帧,接下来对图像组中的每个非关键帧分配重建层级,并按照层级顺序由低至高逐层重建。每个非关键帧的重建过程逐块进行,需要其时域参考帧及当前帧中的空域数据集为每个重建块做混合多重假设预测,并通过求解全变分最小化问题重建预测残差,最后将预测值与预测残差相加得到重建图像。实验结果表明,在相同采样率下,本文提出的基于多重假设的分层重建方案比已有的方法可以获得最高约3.2dB的峰值信噪比增益。

    Abstract:

    To improve the performance of Compressed Video Sensing (CVS), a multi-hypothesis based hierarchical reconstruction method is proposed. In the presented framework, the key frame in Group of Picture (GOP) is first reconstructed independently. Afterwards, reconstruction level is allocated for each non-key frame, following which the reconstruction is processed from the lowest level to the highest one. When reconstructing a non-key frame, block by block reconstruction is processed. The temporal data set in reference frames and spatial data set in current frame are taken as multi-hypothesis (MH) for current block, followed by solving the Total Variation Minimization (TVmin) problem to reconstruct the prediction residual. The final reconstructed image is formed by adding the prediction residual to the prediction value. Experimental results show that compared with the existing method, the proposed one can get higher Peak Signal to Noise Ratio (PSNR) up to about 3.2dB at the same sampling rate.

    参考文献
    相似文献
    引证文献
引用本文

常侃,覃团发,唐振华.基于多重假设的视频压缩感知分层重建[J].数据采集与处理,2013,28(6):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2012-11-16
  • 最后修改日期:2013-11-05
  • 录用日期:2013-05-28
  • 在线发布日期: 2014-01-08