基于Multi-Scale Retinex模型的肝脏超声图像增强算法
DOI:
作者:
作者单位:

[1]河北大学电子信息工程学院;[2]北京理工大学信息与电子学院,北京理工大学信息与电子学院,河北大学附属医院功能科;河北大学附属医院功能科

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61271112)资助项目;河北大学自然科学基金(2008Q35)资助项目。


Enhancement of Ultrasonic Liver Images Based on Multi-Scale Retinex Model
Author:
Affiliation:

[1]College of Electronic and Information Engineering, Hebei University;[2] School of Information and Electronics, Beijing Institute of Technology,,School of Information and Electronics, Beijing Institute of Technology,Department of Function, Affiliated Hospital of Hebei University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    肝脏B超图像动态范围宽、细节丰富、对比度差,影响图像的特征提取和识别。基于多尺度Retinex (Multi-Scale Retinex, MSR)模型的图像增强方法是一种基于人眼视觉原理的图像增强方法,能同时有效实现图像的动态范围压缩和颜色保真。本文融合Retinex理论,采用三个尺度的Retinex算法对肝脏超声图像进行增强处理,提取经MSR算法增强处理后的正常肝和脂肪肝图像的灰度均值、对比度和信息熵参数,并与直方图均衡化算法、同态滤波算法进行对比。实验结果表明,肝脏超声图像经MSR算法增强处理后,提高了图像特征参数(对比度、信息熵)的区分度,增强了图像暗区的对比度和清晰度,改善了图像视觉质量,能有效辅助临床诊断。

    Abstract:

    Ultrasound liver images have characteristics such as wide dynamic range, abundant details and low contrast, which are not propitious for features extraction and pattern classification. Images enhancement algorithms based on Multi-Scale Retinex (MSR) combines the dynamic range compression with the tonal rendition at the same time. We apply three-scale Retinex model to enhance ultrasonic liver images, then extract the lightness, contrast, and entropy of the enhanced images, comparing the results with that of the usual image enhancement methods, such as histogram equalization algorithm and homomorphic filtering algorithm. Experiment results show that image enhancement algorithms based on MSR model can improve the distinguish degree of ultrasonic liver images features (contrast, entropy), and increase contrast and entropy, which is helpful to the assisted diagnosis of liver diseases.

    参考文献
    相似文献
    引证文献
引用本文

黄亚丽,刘志文,赵真.基于Multi-Scale Retinex模型的肝脏超声图像增强算法[J].数据采集与处理,2013,28(5):597-601

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2012-06-18
  • 最后修改日期:2013-03-06
  • 录用日期:2013-05-27
  • 在线发布日期: 2013-11-28