一种基于高阶统计信息的信噪比估计改进算法
DOI:
作者:
作者单位:

空军工程大学电讯工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金资助项目;国家自然科学基金项目(面上项目,重点项目,重大项目)


An Improved SNR Estimation Algorithm Of Higher-order Statistics
Author:
Affiliation:

Telecommunication Engineering Institute, Air Force Engineering University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对正交幅度调制(MQAM)信号在低信噪比条件下估计精度不高的问题,提出了一种基于综合利用高阶统计信息的信噪比估计改进算法。根据所选高阶统计量最高阶数的不同,建立了三种信噪比与多种高阶统计量运算式之间的线性关系,利用全回归线性分析方法将三种线性关系转化为三种全回归模型,并求解模型系数。该算法充分利用了多种高阶统计量的有用信息,提高了信噪比估计精度。MQAM的仿真结果表明:在低信噪比条件下,该算法减小了信噪比估计误差,其估计性能明显优于传统的其它算法,且三种模型估计性能依次增加,可依据不同的信噪比要求对三种模型进行选取。

    Abstract:

    To solve the low estimation accuracy of MQAM signal-to-noise (SNR) estimate under the low SNR condition, an improved SNR estimation algorithm based on comprehensive utilization of higher-order statistics is proposed. According to the difference between the topmost rank of the higher-order statistics, the linearity relationships of three kinds of SNR and various higher-order statistics expression are created, which are converted to three kinds of whole regression patterns with a whole regression linear analysis method, and the pattern coefficients are solved. It can fully use the useful information of the higher-order statistics, and increase the accuracy of SNR estimate. Simulation results show that under the low SNR condition the new algorithm can get less SNR estimating errors and obviously better estimation performance than traditional algorithms. Moreover, the estimation performances of three kinds of patterns increase in turn, and it can carry on a selection to three kinds of patterns according to the different SNR request.

    参考文献
    相似文献
    引证文献
引用本文

韩博.一种基于高阶统计信息的信噪比估计改进算法[J].数据采集与处理,2012,27(5):576-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2012-01-05
  • 最后修改日期:2012-02-20
  • 录用日期:2012-06-14
  • 在线发布日期: 2012-11-05