基于平方根UKF双向滤波的单站无源定位算法
DOI:
作者:
作者单位:

61906部队

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Square-Root UKF with Forward-Backward Filtering for Single-Observer Passive Location
Author:
Affiliation:

Unit No.61906,PLA

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    单站无源定位可观测性弱、参数测量精度不高,因此初始值测量误差往往较大。而无迹卡尔曼滤波(UKF)算法对初始值较为敏感并且由于数值计算的舍入误差会产生滤波发散,为了解决以上问题,提出了一种基于平方根UKF(SRUKF)的双向滤波算法。该算法通过使用误差协方差的平方根替代协方差阵参与滤波,保证了算法的稳定性,同时运用URTSS后向平滑方法,用平滑值取代初始值,为前向滤波提供较高精度的起始值,提高算法的滤波精度,从而提高了算法对初始值的鲁棒性。仿真结果表明,与UKF算法和SRUKF算法相比,该算法提高了滤波的稳定性、收敛速度、定位精度及对初始值的鲁棒性。

    Abstract:

    The observability and measurement accuracy are low in single observer passive location, so the initial error is usually large. As the unscented kalman filter(ukf) in single observer passive location is sensitive to the initial value and will divergent because of the numerical calculation error, an improved forward-backward smoothing algorithm based on square-root unscented kalman filter(srukf) is presented. To guarantee the stability of filter, the algorithm used the covariance square root matrix instead of covariance matrix in the process of estimation. And the algorithm utilized backward smoothing to get a more accurate state estimate as an initial condition to improve the robustness of the initial value. Simulation results show that the algorithm has better performance to ukf and srukf in the filter’s stability, convergence velocity, positioning precision and the robustness of the initial value.

    参考文献
    相似文献
    引证文献
引用本文

黄耀光.基于平方根UKF双向滤波的单站无源定位算法[J].数据采集与处理,2013,28(2):207-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-11-27
  • 最后修改日期:2012-04-10
  • 录用日期:2012-06-08
  • 在线发布日期: 2013-04-25