基于时空特征点的群体异常行为检测算法研究
DOI:
作者:
作者单位:

青岛科技大学 信息学院 山东 青岛266061,青岛科技大学 信息学院 山东 青岛266061

作者简介:

通讯作者:

基金项目:

国家自然科学基金主任基金项目“云计算模式下视频监控中异常行为检测与传输实时性研究(61142003)”;山东省自然科学基金(ZR2010FL007);山东省高等学校科技计划项目(J10LG23)


Abnormal Crowded Behavior Detection Based on Spatial Temporal Interesting Points
Author:
Affiliation:

Institute of Informatics Qingdao University of Science and Technology Qingdao China 266061,Institute of Informatics Qingdao University of Science and Technology Qingdao China 266061

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    提出了用时空特征点描述群体行为的新方法。首先,对比分析时空Harris角点、Gabor小波、Hessian矩阵三种特征点提取方法,选择了基于Hessian矩阵的尺度不变方法提取特征点;分别采用梯度直方图、光流直方图以及时空Haar特征三种方法对特征点构建描述符。然后,采用Bag-of-words策略对正常行为建模,使用基于EM估计的高斯混合模型建模产生关键词,根据关键词为每一视频片段建立一个带有概率分布的编码向量,形成编码表。最后,异常行为的检测是将测试样本的编码向量与训练样本编码表进行比较,计算相似度距离,当最小距离大于阈值时,判该群体行为异常。在UCF和UMN两种群体行为数据集下的实验结果表明,该方法能够对群体异常行为进行有效识别,对尺度变化以及背景光照变化等具有较好的适应性。

    Abstract:

    This paper proposes a new method describing human behavior in crowded scenes based on STIPs (Spatial Temporal Interesting Points). By comparing three different methods for STIPs extraction, which are Harris corner, Gabor wavelet and Hessian matrix, The scale-invariant extraction method which based on Hessian matrix is chosen in the paper. Histogram of gradient, histogram of optical flow orientation and spatial-temporal Haar feature are used to build descriptors for STIPs. Then bag-of-words model is used in normal behavior modeling. GMM based on EM estimation is introduced to produce keywords. Then each video of normal action is divided into several clips and they are described in probability vectors using keywords. All vectors construct normal behavior codebook. In testing phase, through calculating the similarity distance between the coding vector of the test sample and that of the normal, abnormal behavior can be detected when the distance exceeds the threshold. The algorithm is tested in UMN and UCF datasets, the experiments show that the proposed algorithm has effective identification for group abnormal behavior, and it has good adaptability against scale variance and illumination changing.

    参考文献
    相似文献
    引证文献
引用本文

王传旭,董晨晨.基于时空特征点的群体异常行为检测算法研究[J].数据采集与处理,2012,27(4):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-11-22
  • 最后修改日期:2012-02-28
  • 录用日期:2012-04-16
  • 在线发布日期: 2012-08-21