应用似然比框架的法庭说话人识别
DOI:
作者:
作者单位:

中国刑警学院声像资料检验技术系,中国科学院噪声与振动重点实验室声学研究所

作者简介:

通讯作者:

基金项目:

国家自然科学基金


Forensic Speaker Identification Based on Likelihood Ratio
Author:
Affiliation:

China Criminal Police University,Key Laboratory of Noise and Vibration Research, Institute of Acoustics, Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了检验元音倒谱特征在法庭说话人识别中的性能,本文提出了使用元音稳定段MFCC作为识别特征基于似然比的法庭说话人识别方法,并使用45人电话对话录音中元音/a/作为样本进行了测试。实验结果表明,该方法不仅能正确识别说话人,而且能根据当前嫌疑人样本和问题语音样本的差异,量化该语音样本作为证据的力度,为法庭提供科学合理的证据评估结果。自动特征提取的引入比起人工提取共振峰特征,提高了工作效率,识别系统性能也获得大幅提升。

    Abstract:

    To test the performance of vowel cepstrum in forensic speaker recognition, a forensic speaker identification method based on likelihood ratio and MFCC features is presented in this paper. This method is tested in vowel /a/ of 45 people’s telephone dialog recordings and shows high identification ratio. Experiment results show that not only can the method identify the speaker, but also quantify the evidence strength according the acoustic difference between the questioned recording and the suspect’s recording, and provide the scientific and reasonable evaluation results to court. Compare to the manual method in formants extraction and pitch extraction, the usage of auto extraction of features increases efficiency and performance of forensic speaker identification system.

    参考文献
    相似文献
    引证文献
引用本文

王华朋,杨军.应用似然比框架的法庭说话人识别[J].数据采集与处理,2013,28(2):239-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-11-07
  • 最后修改日期:2012-05-25
  • 录用日期:2012-07-13
  • 在线发布日期: 2013-04-25