基于多输入层遗传神经网络的热轧产品性能预测
DOI:
作者:
作者单位:

北京科技大学高效轧制国家工程研究中心,北京科技大学高效轧制国家工程研究中心

作者简介:

通讯作者:

基金项目:

国家高技术研究发展计划(863计划)


The Prediction of Mechanical Properties of Hot-Rolling Steel by Using GA Neural Network
Author:
Affiliation:

National Engineering Research Center of Advanced Rolling,University of Science and Technology Beijing,National Engineering Research Center of Advanced Rolling,University of Science and Technology Beijing

Fund Project:

The National High Technology Research and Development Program of China (863 Program)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文根据热轧产品加工流程的多阶段特点,建立了高维多输入层遗传神经网络机械性能预报模型。该模型根据工艺流程发生顺序在前馈人工神经网络的某些隐含层上增添了输入节点,能够更好地模拟热连轧生产过程。同时,为避免标准BP算法陷入局部极值点,本文采用遗传算法对神经网络权值和阈值进行全局预处理,再利用标准BP算法进行训练,使两者优缺点相互补偿,从而得到全局最优解。最后,利用某钢铁企业的热轧产品实际生产数据对模型进行测试,预测结果满足偏差要求,且与经典BP神经网络及径向基函数神经网络相比较,具有更高的精度和稳定性。

    Abstract:

    According to the mutli-stage traits of manufacturing process of hot-rolling strip, a genetic neural network model with high-dimension multi-input layers is built in this paper to predict the product’s mechanical property. This model can be seen as the result of adding input node to some hidden layers of neural network according to the conducting order of technological process, so that it can simulate the manufacturing process much better. Meanwhile, In order to avoid local extreme point caused by standard BP algorithm, genetic algorithm is adopted in this paper to conduct global pretreatment for weights and thresholds of neural network. Then standard BP algorithm is used to do the training to compensate mutually both advantages and disadvantages, and thereby get global optional solution. Finally, testing results given by the actual manufacture date of hot-rolled products from an iron and steel enterprise show that the predicted result satisfies the requirement of demand. Moreover, it has higher accuracy and stability than classic BP and RBF neural network..

    参考文献
    相似文献
    引证文献
引用本文

吕志民,隋筱玥.基于多输入层遗传神经网络的热轧产品性能预测[J].数据采集与处理,2012,27(5):625-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-09-16
  • 最后修改日期:2011-12-01
  • 录用日期:2011-12-26
  • 在线发布日期: 2012-11-05