一种自适应网络舆情演化建模方法
DOI:
作者:
作者单位:

解放军信息工程大学信息工程学院,解放军信息工程大学信息工程学院,解放军信息工程大学信息工程学院,解放军信息工程大学信息工程学院

作者简介:

通讯作者:

基金项目:

国家社会科学基金重大项目(09&ZD014); 全军军事学研究生课题资助项目


An Adaptive Evolution Modeling Method of Internet Public Opinions
Author:
Affiliation:

Information Engineering Institute, Information Engineering University,Information Engineering Institute, Information Engineering University,Information Engineering Institute, Information Engineering University,Information Engineering Institute, Information Engineering University

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    网络舆情演化建模及在此基础之上的趋势预测已成为网络舆情研究的热点内容。针对短期趋势预测方法忽略演化过程统计特性的动态变化性,致使模型选择盲目、预测效果较差的问题,本文提出一种自适应网络舆情演化建模方法(AEMIPO)。首先,动态跟踪网络舆情演化过程的平稳性、周期性和自相似性等统计特性;其次,选取能够描述上述统计特性的ARMA、ARIMA、SARIMA、FARIMA模型构建备选模型库;最后,通过制定模型选择规则,从备选模型库中选择合适的模型对当前时刻的演化过程进行自适应建模,并预测其演化趋势。实验表明,与现有方法相比,AEMIPO具有更高的预测精度与更好的预测稳定性,更适合对网络舆情演化过程进行短期建模及趋势预测。

    Abstract:

    These years, modeling the process of Internet public opinions' evolution and trend forecasting based on that has become a hot topic. The existing short-term trend forecasting method ignores the variability of statistical properties of Internet public opinions’ evolution, which leads to a blind model selection, and the forecasting performance is poor. Therefore, this paper presents an adaptive evolution modeling method of Internet public opinions (AEMIPO). Firstly, this method tracks the statistical characteristics of the process of Internet public opinions' evolution dynamically, such as smoothness, periodicity and self-similarity. Then, by selecting ARMA, ARIMA, SARIMA and FARIMA, an alternative model bank is constructed. Finally, by making model selection rules, an appropriate model is selected to model and forecast the process of evolution adaptively. The experimental results show that compared with the existing methods, AEMIPO has higher forecasting accuracy and stability, and this method is more suitable for short-term modeling and trend forecasting of Internet public opinions’ evolution.

    参考文献
    相似文献
    引证文献
引用本文

周耀明,李弼程,王波,张银燕.一种自适应网络舆情演化建模方法[J].数据采集与处理,2013,28(1):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-09-05
  • 最后修改日期:2012-02-28
  • 录用日期:2012-05-17
  • 在线发布日期: 2013-05-27