基于自适应卡尔曼滤波的异步电机转速和负载转矩估计
DOI:
作者:
作者单位:

沈阳工业大学,中国科学院沈阳自动化研究所 工业信息学重点实验室

作者简介:

通讯作者:

基金项目:

国家“八六三”高技术项目(2008AA042901)


Speed and Load Torque Estimation of Induction Motors based on an Adaptive Kalman Filter
Author:
Affiliation:

Shenyang University of technology,Key Laboratory of Industrial Informatics,Shenyang Institute of Automation,Chinese Academy of Sciences

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对常规EKF估计结果受给定的噪声协方差阵影响较大的问题,提出了一种基于自适应卡尔曼(AEKF)同时估计电机转速和负载转矩的方法。在用AEKF估计转速和负载转矩时,根据AEKF的要求,将电机增广随机数学模型的输入噪声与建模误差引入的噪声直接合并,等效为状态噪声;基于变换后的模型,利用状态预测残差估计状态噪声协方差阵,利用观测残差估计观测噪声协方差阵,实现了噪声协方差阵自适应变化。实验结果表明所提方法的估计结果基本不受给定的噪声协方差阵初值影响,且能以较高的精度估计出电机的转速和负载转矩。

    Abstract:

    For dealing with the problem that the estimate result of EKF is affected severely by the covariance matrices of noises, a new method using adaptive kalman filter(AEKF) to estimate simultaneously load torque and speed of motor is presented. while the speed and load torque are estimated,the input noise and noise introduced by modeling error are merged into an equivalent state noise in the augmented model of motor;Based on the transformed model, the covariance matrices of state noises are estimated using state predict residuals and the covariance matrices of observation noises are estimated using the measure residuals, then the adaptive diversification of the covariance matrices of noises are implement. The experimental results show that the estimate results are not affected by the given initial value of the covariance matrices of noises, and have high accuracy.

    参考文献
    相似文献
    引证文献
引用本文

于洪霞,胡静涛.基于自适应卡尔曼滤波的异步电机转速和负载转矩估计[J].数据采集与处理,2012,27(5):552-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-08-29
  • 最后修改日期:2011-11-29
  • 录用日期:2011-12-26
  • 在线发布日期: 2012-11-05