基于自投影和灰度检索的视频帧中异常行为检测
DOI:
作者:
作者单位:

河北工业大学,河北工业大学计算机与软件学院,河北工业大学

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


TThe Anomalous Behavior Detection in Video Sequence Based on Self-casting Histogram and Gray Histogram
Author:
Affiliation:

Hebei University of Technology,,Hebei University of Technology

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对智能监控系统,本文提出了一种基于运动目标灰度直方图和自身投影直方图的检索匹配方法,能够快速实现视频序列中行人的运动方向异常检测。该方法结合目标的灰度直方图和自身投影直方图在人群中快速检索匹配目标,采用目标质心运动历史记录表连续记录目标质心和运动方向,通过比较各个目标的运动方向找出运动人群中的异常目标。实验结果表明引入目标的自身投影直方图后,比只利用灰度图的灰度信息有更高的检测准确性,同时历史移动记录表可完全胜任运动目标信息记录的任务。该方法计算量小,同时利用记录质心的移动速度能实时对目标的运动情况进行预测,对运动目标的相互遮蔽有一定的鲁棒性。

    Abstract:

    For the intelligent video surveillance system, a motion object retrieval match approach combining with the gray histogram and self-casting histogram is proposed in this paper, which can detect the object with abnormal direction of motion rapidly. This method uses the feature combined with the gray histogram and self-casting histogram to rapidly detect and match the object among crowds; uses the motion history record list of object centroid to continuously record the centroid of object and its motion direction; and compares the motion direction to find the abnormal object among moving crowds. The experiment result shows that, compared with method only employing the information of gray histogram, the accuracy of detection is improved after introducing object self-casting histogram, meanwhile, the motion history record list is fully qualified to record the motion information of moving objects. This method has less calculating complexity and good robustness against objects covered by each other during their movement by recording the speeds of centroid motion.

    参考文献
    相似文献
    引证文献
引用本文

郭迎春,吴鹏,袁浩杰.基于自投影和灰度检索的视频帧中异常行为检测[J].数据采集与处理,2012,27(5):612-

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-08-12
  • 最后修改日期:2011-11-19
  • 录用日期:2011-12-26
  • 在线发布日期: 2012-11-05