区分性训练在声纹密码中的新应用
DOI:
作者:
作者单位:

中国科学技术大学讯飞语音实验室,安徽科大讯飞信息科技股份有限公司,中国科学技术大学讯飞语音实验室,中国科学技术大学讯飞语音实验室;安徽科大讯飞信息科技股份有限公司

作者简介:

通讯作者:

基金项目:

安徽省科技攻关项目(09120201003)


A Novel Application of Discriminative Training in Vocal Password
Author:
Affiliation:

iFly Speech Lab,University of Science and Technology of China,Anhui USTC iFLYTEK Co.,Ltd.,iFly Speech Lab,University of Science and Technology of China,iFly Speech Lab,University of Science and Technology of China; Anhui USTC iFLYTEK Co.,Ltd.

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在声纹密码任务中由于数据稀疏的问题难以实现区分性训练,本文以一种表征距离度量的特征矢量为基础提出新的声纹密码区分性系统框架,对正反例样本的新特征矢量实现了基于最小分类错误准则的区分性训练,将声纹密码从确认问题转化为二类分类问题。在自由说话风格的60人数据集上,声纹密码区分性系统与GMM-UBM系统融合后等错误率为4.48%,相对GMM-UBM、DTW基线系统性能分别提升了17.95%和59.68%。

    Abstract:

    Due to data sparsity, discriminative training has not been successfully applied in the system of vocal password by now. This paper proposed a novel vocal password framework based on a specific feature processing strategy, in which the new feature was used to represent the distance measure and the problem caused by data sparsity could be solved to some extent. As a result, the vocal password was actually transferred from verification to binary classification and the discriminative training of these two models was successfully accomplished on the minimum classification error criteria. After fusing this discriminative system with the GMM-UBM system, the EER performance decreased to 4.48%, relatively 17.95% and 59.68% lower than the GMM-UBM and the DTW system respectively on the corpus including 60 speakers. This result shows us the new application of discriminative training in the vocal password system is feasible and effective.

    参考文献
    相似文献
    引证文献
引用本文

潘逸倩,胡国平,戴礼荣,刘庆峰.区分性训练在声纹密码中的新应用[J].数据采集与处理,2012,27(4):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-08-06
  • 最后修改日期:2011-11-28
  • 录用日期:2011-12-26
  • 在线发布日期: 2012-08-21