基于粒子群算法和序贯搜索的高光谱波段选择
DOI:
作者:
作者单位:

上海大学 通信与信息工程学院

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目


Hyperspectral Band Selection using Particle Swarm Optimization and Sequential Search
Author:
Affiliation:

Shanghai University

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    波段选择是降低高光谱数据量,克服地物分类中Hughes现象的有效手段。子集生成方式和评价准则是选择算法的两要素。提出一种混合随机搜索与启发式搜索的子集生成方法。该方法在随机搜索中嵌入启发式搜索,对由离散粒子群优化算法每次迭代更新的种群利用序贯搜索进行局部微调,提高了随机搜索的精度。此外,这种嵌入微调也保证了优化算法解的有效性。高光谱波段选择与分类实验比较了该方法与混合遗传算法、标准遗传算法和顺序前向浮动搜索的性能,表明算法能选择出评价准则意义下更好的子集。

    Abstract:

    Band selection can cut down the large amount of hyperspectral data and alleviate the Hughes phenomenon in supervised classification of ground objects. The generation and evaluation of subsets are two key factors for selection algorithm. A hybrid scheme of random search and heuristic search is proposed to generate the band subset. The method embeds the sequential search into the evolution optimization for better ability of the fine tune in local search space and thus behaves well in both global and local cases. In addition, the embed scheme guarantees the validity of solutions for the optimization algorithms. The performance comparisons among the proposed method, hybrid genetic algorithm (HGA), standard genetic algorithm (SGA) and sequential backward floating search (SFFS) are carried out in the experiments on band selection and classification with the hyperspectral data sets. The results show that the proposed method can obtain better subsets according to the evaluation criterion.

    参考文献
    相似文献
    引证文献
引用本文

黄睿.基于粒子群算法和序贯搜索的高光谱波段选择[J].数据采集与处理,2012,27(4):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-07-14
  • 最后修改日期:2011-09-07
  • 录用日期:2011-10-25
  • 在线发布日期: 2012-08-21