波谱匹配支持的遥感专题地物自适应提取
DOI:
作者:
作者单位:

中国科学院遥感应用研究所

作者简介:

通讯作者:

基金项目:

国家自然科学基金项目(面上项目,重点项目);国家科技支撑计划项目


Adaptive Thematic Object Extraction from Remote Sensing Image Based on Spectral Matching
Author:
Affiliation:

Institute of Remote Sensing Applications, CAS

Fund Project:

The National Natural Science Foundation of China (General Program, Key Program, Major Research Plan)

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    自然界地物种类繁多,传统遥感分类方法难以兼顾地物表现的多样性及各自的特性,从而不易获得稳定的精确分类结果。已有研究发展了针对特定地物的专题提取方法,然而其适用的地物有限,难以作为通用的提取模式推广应用。鉴于此,为贴合地物表现的多样性和复杂性,提出一种波谱匹配支持下的遥感影像专题地物自适应提取方法,经过专题地物端元选取、波谱匹配、影像自动分割、“整体-局部”的空间转换,以及局部针对性、精细化地迭代逼近等一系列相互衔接的算法,以全面、准确地提取遥感影像上的专题地物。通过在ETM 影像上水体和裸地的提取实验,并与最大似然法和SVM分类结果的比较,证明了该方法对多样性专题地物提取的有效性和普适性。

    Abstract:

    There are various objects on the earth, for which traditional classification methods can hardly considering their diversity and specific characteristics; therefore, it is difficult to obtain stable and precise classification results. Under this circumstance, an adaptive extraction method based on spectral matching, is proposed to extract thematic object completely and accurately from remote sensing image. This algorithm first selects the endmember of thematic object, and use spectral matching method to get the matching index; then, histogram threshold based auto-segmentation method is used to initially separate thematic object from background; next, thematic object pixels are searched out and taken as seed points to proceed region growing to gain the local area of thematic object; last, the boundary of the local area is searched and iterative classification within the local area is employed to precisely extract thematic object’s precise partition. Experiments on ETM image to extract water and bareland are employed here, and through comparison with maximum likelihood classification and support vector machine (SVM) classification, it verifies the effectiveness and commonality of this method.

    参考文献
    相似文献
    引证文献
引用本文

乔程.波谱匹配支持的遥感专题地物自适应提取[J].数据采集与处理,2012,27(3):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-05-10
  • 最后修改日期:2012-05-02
  • 录用日期:2011-12-30
  • 在线发布日期: 2012-06-29