基于语音信号稀疏性的FDICA初始化和后处理方法
DOI:
作者:
作者单位:

中国科学技术大学

作者简介:

通讯作者:

基金项目:


FDICA initialization and post-processing method based on sparseness of speech
Author:
Affiliation:

University of Science and Technology of China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    盲源分离是仅用观测的混合信号去估计源信号的一种方法,在信号处理领域得到广泛关注。目前解决语音信号盲源分离的两大类方法分别为频域独立成分分析(FDICA)和基于稀疏性的时频掩蔽(TF masking)。本文将两类方法优点相结合,利用TF masking方法的结果,对FDICA做初始化,在加快FDICA收敛速度的同时也避免了次序不确定性问题。另外本文提出一种新的基于语音稀疏性的FDICA盲源分离的后处理方法:基于局部最小比例控制(LMRC)谱减法,比常规的TF masking、维纳滤波等后处理方法,能够更有效控制音乐噪声,提高分离性能。合成数据和实际采集数据的实验结果验证了本文方法的有效性

    Abstract:

    Blind source separation (BSS) is the approach taken to estimate original source signals using only the information of the mixed signals observed in each input channel, and much attention has been paid to BSS in many fields of signal processing. Two approaches have been widely studied and employed to solve the BSS problem: one is based on independent component analysis (ICA) and the other relies on the sparseness of source signals (TF-masking). In order to speed up the convergence rate and avoid permutation problems, this paper presents a method combining the advantages of the two methods uses the results of TF masking to initialize the FDICA. This paper also proposes a new post-processing method for FDICA: Local Minimum Ratio Control (LMRC) spectral subtraction, which is based on the sparse characteristics of speech. Compared with the conventional TF masking and Wiener filter post processing methods, the proposed method can more effectively control musical noise, and improve the separation performance. Experimental results with synthetic data and real data demonstrate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

马峰.基于语音信号稀疏性的FDICA初始化和后处理方法[J].数据采集与处理,2012,27(2):210-217

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-05-06
  • 最后修改日期:2011-09-02
  • 录用日期:2011-10-25
  • 在线发布日期: 2012-11-06