基于克隆选择算法的新型多目标派梯策略
DOI:
作者:
作者单位:

河南科技大学

作者简介:

通讯作者:

基金项目:

河南省国际科技合作项目


New Multi-objective Elevator Dispatching Strategy Based on Clonal Selection Algorithm
Author:
Affiliation:

Henan University of Science and Technology

Fund Project:

International Science and Technology Cooperation Projects in Henan Province

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    电梯群控系统中多个优化目标权重值的选取往往受限于设计人员对模型的理解和个人偏好,不能直观地反映权重系数变化对电梯性能的实际影响,把Pareto解集应用到电梯群控系统多目标权重值确定的研究中,采用随机权重法,一次生成多组不同权重值,并对各权重值下生成的派梯方案求取Pareto最优解,能够一次得到多组不同最优派梯方案,为研究人员决策提供了更多直观的数据;根据优缺点互补特性,将梯度下降算子加入克隆选择算法,加快其后期收敛速度,以随机层间均衡交通流为乘客流,将混合算法与克隆选择算法应用与电梯群控系统中寻找节能策略,混合算法一定程度上优于克隆选择算法。

    Abstract:

    In elevator group control system, to choose the weight values of multi-objective optimization problem is always subjected to the designers’ understanding and personal preference, so sometimes the weight values can’t directly reflect the real change of elevator’s performance with the weight coefficients. If we put the Pareto solution set into the research of choosing the weight values, and use the random weight method, after one time, we can get several groups of different weight values, then seek the optimal Pareto solution according to the elevator dispatching strategies generated by different weight values. Because this algorithm can provide us several groups of different and optimal elevator dispatching strategies, at the same time, provide the researchers more useful data to refer. According to the advantages and disadvantages of each algorithm, we join gradient decent algorithm with the clonal selection algorithm, and speed up the convergence rate in later period, define random balanced traffic flow between layers as passengers flow, put hybrid algorithm and clonal selection algorithm into elevator group control system to find the saving energy policy, to some extent, hybrid algorithm has much more superiority than clonal selection algorithm.

    参考文献
    相似文献
    引证文献
引用本文

朱盐.基于克隆选择算法的新型多目标派梯策略[J].数据采集与处理,2012,27(3):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-04-30
  • 最后修改日期:2012-05-04
  • 录用日期:2011-10-21
  • 在线发布日期: 2012-06-29