一种免疫算法与SVR的Hilbert-Huang边界优化
DOI:
作者:
作者单位:

西南科技大学信息工程学院,四川绵阳,西南科技大学国防科技学院,四川绵阳

作者简介:

通讯作者:

基金项目:

四川省科技厅基金资助(2010jz0020)


The Boundary Optimization of Hilbert-Huang Based on An Immune Algorithm and the SVR
Author:
Affiliation:

School of Information Engineering Southwest University of Science and Technology,Mianyang Sichuan,School of National Defence Science Technology,Southwest University of Science and Technology,Mianyang Sichuan

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    Hilbert-Huang(HHT)变换在对信号进行经验模态分解(Empirical Mode Decomposition, EMD)和对各内禀模态函数(Intrinsic Mode Functions, IMF)进行希尔伯特变换时都会出现边界问题。为了克服该问题,本文提出了基于离散均匀免疫算法(Discrete Uniform Immune Algorithm,DUIA)和支持向量回归(support vector regression, SVR)的HHT边界优化方法。该方法采用DUIA优化SVR的参数,并利用SVR对数据延拓,以有效分析HHT边界问题。通过对正弦叠加信号和实际信号的仿真分析表明:本文提出的算法可有效解决HHT变换中存在的边界问题,且其效果优于SVR的数据延拓方法。

    Abstract:

    The Hilbert-Huang (HHT) boundary problem appeared when the signal is decomposed by empirical mode decomposition method (EMD) and the intrinsic mode functions (IMF) in Hilbert transform. In order to overcome the problem, the HHT boundary optimization method based on discrete uniform immune algorithm (DUIA) and support vector regression (SVR) is proposed in this paper. To effectively analyze the boundary problem of HHT, this scheme can use DUIA to optimize parameters of SVR, and then predict the signal by the trained optimally SVR model. For the sine superposition and practical signals, the corresponding simulation results demonstrate that the proposed algorithm can solve the boundary problem of HHT effectively, and its performance is better than prediction method by SVR.

    参考文献
    相似文献
    引证文献
引用本文

姚莉,李磊民.一种免疫算法与SVR的Hilbert-Huang边界优化[J].数据采集与处理,2012,27(2):196-201

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-03-30
  • 最后修改日期:2011-06-02
  • 录用日期:2011-10-25
  • 在线发布日期: 2012-11-06