基于邻域粗糙集的航空发电机健康诊断方法
DOI:
作者:
作者单位:

沈阳航空航天大学,沈阳航空航天大学自动化学院,沈阳飞机设计研究所,沈阳飞机设计研究所

作者简介:

通讯作者:

基金项目:

航空科学基金资助项目;辽宁省教育厅科研基金资助项目;国防基础科研计划项目


Health Diagnosis of Aero-Generator Based on Neighborhood Rough Sets Theory
Author:
Affiliation:

Shenyang Aerospace University,,Shenyang Aircraft Design&Research Institute,shenyang aircraft design & research institute

Fund Project:

Aeronautic Science Foundation of China; The Science Foundation of Department of Education of Liaoning Province; Defense Industrial Technology Development Program

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    对航空发电机进行有效的健康诊断是保证飞机飞行安全的重要技术之一,如何从海量数据提取有用信息,对航空发电机的健康状态进行有效诊断,成为业界关注的主要问题。本文提出一种基于邻域粗糙集和支持向量机相结合的航空发电机智能健康诊断方法。采用专业健康试验平台对某型战斗机的真实航空发电机进行试验,得到转速、负载、油压等大量表征发电机健康状态的监测数据。引入数据挖掘思想,采用邻域粗糙集理论对监测数据进行属性约简,将约简后的属性集输入给所设计的支持向量机健康诊断器,对航空发电机的健康状态进行了诊断研究。研究表明,该方法能够很好实现对某真实航空发电机的健康诊断,具有较高的推广应用价值。

    Abstract:

    Health diagnosis of aero-generator is an issue of great importance to flight safety. One of the requirements is availability of extracting useful information from raw data. This paper presents a health diagnosis method based on neighborhood rough sets theory and support vector machine(SVM). Raw data were obtained from specific aero-generator test platform. An approach of attribute reduction using neighborhood rough sets theory is outlined and a diagnosis classifier is designed based on SVM to further carry out health diagnosis of aero-generator. The effectiveness of the proposed method is demonstrated through an experimental research. Result shows a better performance of the classifier that uses attributes reduction subsets as inputs, and also indicates the method may have wide popularization and application potential.

    参考文献
    相似文献
    引证文献
引用本文

崔建国,宋博翰,董世良,吕瑞.基于邻域粗糙集的航空发电机健康诊断方法[J].数据采集与处理,2012,27(1):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-03-23
  • 最后修改日期:2011-06-20
  • 录用日期:2011-09-08
  • 在线发布日期: 2012-08-21