语音情感的维度特征提取与识别
DOI:
作者:
作者单位:

江苏省广播电视总台

作者简介:

通讯作者:

基金项目:


Dimensional Feature Extraction and Recognition of Speech Emotion
Author:
Affiliation:

Jiangsu Broadcasting Corporation

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文研究了情绪的维度空间模型与语音声学特征之间的关系以及语音情感的自动识别方法。介绍了基本情绪的维度空间模型,提取了唤醒度和效价度对应的情感特征,采用全局统计特征减小文本差异对情感特征的影响。研究了生气、高兴、悲伤和平静等情感状态的识别,使用高斯混合模型进行四种基本情感的建模,通过实验设定了高斯混合模型的最佳混合度,从而较好的拟合了四种情感在特征空间中的概率分布。实验结果显示,本文选取的语音特征适合于基本情感类别的识别,高斯混合模型对情感的建模起到了较好的效果,并且验证了二维情绪空间中,效价维度上的情感特征对语音情感识别的重要作用。

    Abstract:

    The relation between the emotion dimension space and speech features is studied in this paper, and the automatic speech emotion recognition problem is addressed. Dimensional space model is introduced for basic emotions. Speech emotion features are extracted according to the arousal dimension and the valence dimension, statistic features are used to reduce the influence on emotional features due to the text variations. Anger, happiness, sadness and the neutral state is studied. Gaussian mixture model is adopted for modeling and recognizing the four emotion classes, the Gaussian mixture number is optimized in the experiment for good approximation of the probability distribution in the feature space. The experimental results show that, the features used in this paper are suitable for recognizing the basic emotions. The Gaussian mixture model achieves satisfactory classification results, and the importance of the valence features in the two dimensional space is presented in the recognition experiments.

    参考文献
    相似文献
    引证文献
引用本文

李嘉.语音情感的维度特征提取与识别[J].数据采集与处理,2012,27(3):

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2011-03-02
  • 最后修改日期:2012-05-14
  • 录用日期:2011-12-26
  • 在线发布日期: 2012-06-29