基于YOLOv8s-REMN的远景交通标志检测算法
DOI:
作者:
作者单位:

昆明理工大学信息工程与自动化学院,昆明650500

作者简介:

通讯作者:

基金项目:


A Traffic Sign Detection Algorithm Based on YOLOv8s-REMN
Author:
Affiliation:

College of Information Engineering and Automation, Kunming University of Science and Technology,Kunming 650500, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在交通标志检测领域,由于远景交通标志在场景中占比面积很小、标志尺度多样等特点,给检测带来了挑战。为解决上述问题,本文在YOLOv8s基础上进行了改进,提出了一种新型交通标志检测算法YOLOv8s-REMN。首先,该方法在骨干网络中引入RFAConv,增强网络的感受野和特征提取能力;其次,在颈部网络中加入EAGFM模块,优化多尺度特征融合;然后,在检测头部分加入MSDEF模块,增加小目标检测头,提升小目标检测能力;最后,采用NWD损失函数替换CIOU损失函数,优化边界框回归,提高小目标定位精度。实验结果表明,YOLOv8s-REMN在TT100K数据集上实现了较大性能提升,相较于基线YOLOv8s,mAP@0.5提高了6.6%,mAP@0.5:0.95提高了5.1%。该算法的有效性也在中国交通标志检测数据集CCTSDB2021上得到了验证,YOLOv8s-REMN相较于YOLOv8s,mAP@0.5提高了2.9%,mAP@0.5:0.95提高了2.9%。

    Abstract:

    In the field of traffic sign detection, challenges arise due to the small area coverage of distant traffic signs in the scene and the diverse scales of the signs. To overcome the above challenges, this paper presents an improved YOLOv8s-based traffic sign detection algorithm, YOLOv8s-REMN. First, the method introduces the RFAConv into the backbone network to enhance the receptive field and feature extraction capability of the network. Second, the EAGFM module is added to the neck network to optimize multi-scale feature fusion. Then, the MSDEF module is incorporated into the detection head to increase the small object detection head, improving the detection of small targets. Finally, the NWD loss function replaces the CIOU loss function to optimize the bounding box regression and improve the precision of small object localization. Experimental results show that YOLOv8s-REMN achieves significant performance improvements on the TT100K dataset. Compared to the original YOLOv8s, mAP@0.5 increases by 6.6%, mAP@0.5:0.95 increases by 5.1%. The effectiveness of the algorithm is also validated on the Chinese Traffic Sign Detection dataset, CCTSDB2021, where YOLOv8s-REMN outperforms YOLOv8s with a 2.9% increase in mAP@0.5, a 2.9% increase in mAP@0.5:0.95.

    参考文献
    相似文献
    引证文献
引用本文

徐英哲,杜庆治,邵玉斌,朵琳.基于YOLOv8s-REMN的远景交通标志检测算法[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-15