融合Epsilon约束与模糊数学规划的多目标粒子群选址优化算法
DOI:
作者:
作者单位:

1. 南京邮电大学计算机学院、软件学院、网络空间安全学院,南京,210023;2. 南京邮电大学现代邮政学院,南京,210003;3. 南京邮电大学系统安全与可靠性工程应用技术研究所,南京,210003

作者简介:

通讯作者:

基金项目:


Multi-Objective Particle Swarm Algorithm for Location Selection Optimization Integrating Epsilon Constraint and Fuzzy Mathematical Programming
Author:
Affiliation:

1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing, 210023, China ; 2.School of Modern Posts, Nanjing University of Posts and Telecommunications, Nanjing, 210003, China; 3.System Security and Availability Engineering Institute, Nanjing University of Posts and Telecommunications, Nanjing, 210003,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对电动出租车充电设施选址中存在的空间分布失衡与利用率低下问题,本文提出一种融合Epsilon约束与模糊数学规划的多目标粒子群优化算法(FMPPSO)。通过构建涵盖土地成本、接客率及电池损耗的多约束选址模型,设计基于模糊隶属度函数的自适应目标权重分配策略,解决传统进化算法在多目标优化中的早熟收敛难题。创新性引入Epsilon约束机制,动态平衡收敛性与解集分布性,生成高质量Pareto前沿解集。最后通过仿真实验与对比分析验证FMPPSO在求解电动出租车充电设施选址问题上的有效性。

    Abstract:

    To address the issues of spatial distribution imbalance and low utilization rates in electric taxi charging facility siting, this paper proposes a multi-objective particle swarm optimization algorithm (FMPPSO) integrating epsilon constraint and fuzzy mathematical programming. By constructing a multi-constraint siting model incorporating land costs, passenger pickup rates, and battery degradation, we design an adaptive objective weight allocation strategy based on fuzzy membership functions to resolve the premature convergence challenge of traditional evolutionary algorithms in multi-objective optimization. An epsilon constraint mechanism introduced dynamically balances convergence and solution set diversity, generating high-quality Pareto frontier solution sets.Finally, simulation experiments and comparative analyses are conducted to validate the effectiveness of FMPPSO in solving the electric taxi charging station placement problem.

    参考文献
    相似文献
    引证文献
引用本文

周倩 吴加洋 周宇航.融合Epsilon约束与模糊数学规划的多目标粒子群选址优化算法[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-15