基于改进CycleGAN的低光域图像增强模型
DOI:
作者:
作者单位:

1.南京邮电大学计算机学院、软件学院、网络空间安全学院,南京210023; 2.江苏省高性能计算与智能处理工程研究中心,南京 210023

作者简介:

通讯作者:

基金项目:


A Low-Light Domain Image Enhancement Model Based on Improved CycleGAN
Author:
Affiliation:

1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023; 2.Jiangsu HPC and Intelligent Processing Engineer Research Center, Nanjing 210023

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统的循环生成对抗网络(Cycle Generative Adversarial Network,CycleGAN)作为一种无需成对数据集的图像风格迁移模型,在低光域图像增强任务中,存在生成图像细节丢失、色彩失真以及复杂场景下适应性较差等问题. 基于此,本文提出了一种改进型的CycleGAN模型,旨在提升低光域图像增强效果. 首先,在生成器设计上,通过在上采样阶段集成二阶段色彩校正模块,旨在缓解低照度环境下色彩失真和质量退化的问题. 其次将通道-空间混合注意力机制嵌入跳跃连接层,旨在实现特征融合过程中关键信息的自适应增强. 然后在判别器设计上,采用全局-局部判别模式,使其兼顾全局信息与局部细节的判别能力. 最后在损失函数设计上,在对抗损失的基础上引入感知风格损失和内容损失,进一步提升生成图像的结构保真度和视觉自然性. 通过与多种具有代表性的图像增强模型的主客观实验评估对比,实验结果表明,该模型对低光域图像有较好的增强效果,能够有效增强图像的整体亮度以及局部细节,同时不会出现色彩失真,提高了生成图像的质量.

    Abstract:

    The conventional Cycle Generative Adversarial Network (Cycle Generative Adversarial Network,CycleGAN), as an image style transfer model that does not require paired datasets, in the task of low-light domain image enhancement, there are problems such as the loss of details in the generated images, color distortion, and poor adaptability in complex scenarios. Based on this, this paper proposes an improved CycleGAN model which aims to enhance the effect of low - light image enhancement.First, in the design of the generator, a two - stage color correction module is integrated during the upsampling phase to alleviate the problems of color distortion and quality degradation in low - light environments. Second, the channel - spatial hybrid attention mechanism is embedded in the skip connection layer to achieve the adaptive strengthening of key information during the feature fusion process. Then, in the design of the discriminator, a global - local discrimination mode is adopted, enabling it to take into account the discrimination ability of both global information and local details. Finally, in the design of the loss function, perceptual style loss and content loss are introduced on the basis of adversarial loss to further improve the structural fidelity and visual naturalness of the generated images.Through the subjective and objective experimental evaluations and comparison with various representative image enhancement models, the experimental results show that this model has a good enhancement effect on low - light images. It can effectively enhance the overall brightness and local details of the images without causing color distortion, thus it improves the quality of the generated images.

    参考文献
    相似文献
    引证文献
引用本文

刘尚东,吴健,徐鹤,季一木.基于改进CycleGAN的低光域图像增强模型[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-15