基于双向时间建模与时空自监督学习的多行人轨迹预测
DOI:
作者:
作者单位:

1.上海理工大学光电信息与计算机工程学院,上海200093;2.上海理工大学光电信息与计算机工程学院,上海200093

作者简介:

通讯作者:

基金项目:


Multi-Pedestrian Trajectory Prediction based on Bidirectional Temporal Modeling and Spatiotemporal Self-supervised Learning
Author:
Affiliation:

1.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China; 2.School of Optical-Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了捕捉行人轨迹中的复杂时空依赖关系,本文提出了一种结合双向时间学习模块与时空交互学习模块的行人轨迹预测模型。模型通过双向时间特征建模和自监督学习挖掘时空交互特征。在双向时间学习模块中,利用双向时间卷积网络同时建模历史与未来的轨迹信息,以捕捉轨迹动态变化特征。在时空交互学习模块中,通过 TTT (Test-Time Training) 层的自监督学习机制,在推理阶段动态调整特征表示,从而建模时空关联性。最终,通过自适应融合策略对两模块提取的特征进行加权组合,以实现对关键特征的聚焦和无关信息的抑制。实验结果表明,该模型在 ETH 和 UCY 数据集上具有良好的预测性能。

    Abstract:

    To capture the complex spatiotemporal dependencies in pedestrian trajectories, this paper proposes a trajectory prediction model that combines a bidirectional temporal learning module and a spatiotemporal interaction learning module. The model leverages bidirectional temporal feature modeling and self-supervised learning to extract spatiotemporal interaction features. In the bidirectional temporal learning module, a bidirectional temporal convolutional network is utilized to simultaneously model both historical and future trajectory information, enabling the capture of dynamic trajectory changes. In the spatiotemporal interaction learning module, the Test-Time Training (TTT) layer is employed with a self-supervised learning mechanism to dynamically adjust feature representations during the inference stage, thereby modeling spatiotemporal correlations. Finally, an adaptive fusion strategy is used to combine the features extracted by the two modules, focusing on key features while suppressing irrelevant information. Experimental results demonstrate that the proposed model achieves competitive prediction performance on the ETH and UCY datasets.

    参考文献
    相似文献
    引证文献
引用本文

赵帅 ,李琳.基于双向时间建模与时空自监督学习的多行人轨迹预测[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-15