基于色偏校正和天空分割的沙尘图像增强方法
DOI:
作者:
作者单位:

1.兰州交通大学 自动化与电气工程学院,甘肃 兰州 730070 2.兰州交通大学 甘肃省高原交通信息工程及控制重点实验室,甘肃 兰州 730070

作者简介:

通讯作者:

基金项目:


Sand-dust Image Enhancement Method Based on Color Cast Correction and Sky Segmentation
Author:
Affiliation:

1.School of Automation and Electrical Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China; 2.Key Laboratory of Plateau Traffic Information Engineering and Control of Gansu Province, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对沙尘图像目前存在的颜色偏移、清晰度低以及暗通道先验方法在处理图像天空区域时效果不好等问题,提出一种基于色偏校正和天空分割的沙尘图像增强方法。首先,结合通道补偿和灰度世界算法校正沙尘图像色偏。其次,提出了一种基于天空分割的去雾方法。通过信息熵确定图像的分割阈值,利用阈值将图像分割为天空区域和非天空区域;并利用融合窗口对暗通道进行优化;然后,引入自适应调节因子对透射率进行调节,利用大气散射模型还原图像。最后,在HSV空间中利用自适应饱和度增强算法和自适应伽马矫正对图像饱和度和亮度进行调整。实验结果表明:所提方法可以校正沙尘图像的色彩偏移现象,提高图像的清晰度,同时可以提高天空区域的恢复效果。本方法在平均梯度、标准差、信息熵等量化指标分别提高了2.27%、4.34%和0.25%。

    Abstract:

    To address issues in sand-dust images, such as color shift, low clarity, and he poor performance of the dark channel prior method in handling sky regions, a sand-dust image enhancement method based on color cast correction and sky segmentation is proposed. First, the color cast in sand-dust images is corrected using a combination of channel compensation and the gray-world algorithm. Second, a dehazing method based on sky segmentation is proposed. The segmentation threshold is determined using information entropy, which separates the image into sky and non-sky regions. The dark channel is optimized using a fusion window. Then, an adaptive adjustment factor is introduced to refine the transmission map, and the atmospheric scattering model is employed to restore the image. Finally, in the HSV color space, an adaptive saturation enhancement algorithm and adaptive gamma correction are applied to adjust the image's saturation and brightness. Experimental results show that the proposed method can correct the color cast in sandstorm images, enhance image clarity, and improve restoration performance in sky regions. The method achieves improvements of 2.27%, 4.34%, and 0.25% in terms of average gradient, standard deviation, and information entropy, respectively.

    参考文献
    相似文献
    引证文献
引用本文

牛宏侠,宋丁鑫,侯涛.基于色偏校正和天空分割的沙尘图像增强方法[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-15