基于Transformer与多层注意力机制的膀胱医学图像分割算法研究
DOI:
作者:
作者单位:

上海理工大学 光电信息与计算机工程学院,上海 200093

作者简介:

通讯作者:

基金项目:


Research on Bladder Medical Image Segmentation Algorithm Based on Transformer and Multi-Level Attention Mechanism
Author:
Affiliation:

School of Optical-Electrical & Computer Engineering, University of Shanghai for Science & Technology, Shanghai 200093,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    深度学习技术目前已经广泛应用于医学图像分割领域,然而,膀胱图像的精准分割依然面临挑战。本研究针对膀胱 MRI 图像分割问题,提出了一种基于特征融合以及注意力机制的改进算法(MIV-Net),通过引入了多尺度核心特征融合器(Multi-scale Core Feature Fusionizer,MCF),以增强模型图像特征提取能力,视觉特征解析与转换(Vision Transformer,VIT)网络,优化了全局信息处理能力。此外,在解码过程中通过多层次注意力融合(Multi-level Attention Fusion,MAF)模块来增强对上下文信息的利用。实验结果表明:MIV-Net模型在膀胱壁和膀胱肿瘤的分割中展现出优异的性能,其 IoU、Precision、Dice 系数等关键评价指标均显著超越当前主流方法,在两个分割任务上分别达到了 83.16%、91.66%、90.81%以及 82.49%、90.50%、90.40%,该模型不仅在技术上具有创新性,更在实际应用中有望显著提升膀胱癌诊断的准确性。

    Abstract:

    Deep learning technology has been widely applied in the field of medical image segmentation; however, precise segmentation of bladder images remains challenging. This study addresses the issue of bladder MRI image segmentation by proposing an improved algorithm based on feature fusion and attention mechanisms (MIV-Net). The algorithm introduces a Multi-scale Core Feature Fusionizer (MCF) to enhance the model's image feature extraction capability, and a Vision Transformer (VIT) Network to optimize global information processing. Additionally, the utilization of contextual information is enhanced during the decoding process through the Multilevel Attention Fusion (MAF) module. Experimental results demonstrate that the MIV-Net model exhibits superior performance in the segmentation of the bladder wall and bladder tumors. Key evaluation metrics such as IoU, Precision, and Dice coefficients significantly surpass current mainstream methods, achieving 83.16%, 91.66%, and 90.81% for bladder wall segmentation, and 82.49%, 90.50%, and 90.40% for bladder tumor segmentation, respectively. This model not only shows technical innovation but also holds promise for significantly improving the accuracy of bladder cancer diagnosis in practical applications.

    参考文献
    相似文献
    引证文献
引用本文

高博艺,丁学明,丁雪峰,胡鸿翔.基于Transformer与多层注意力机制的膀胱医学图像分割算法研究[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-15