基于改进自适应卡尔曼滤波的鸟鸣声降噪方法研究
DOI:
作者:
作者单位:

1.山东理工大学农业工程与食品科学学院 , 淄博 255000 ; 2.中国科学院声学研究所南海研究站 , 海口 570105

作者简介:

通讯作者:

基金项目:


Study on the noise reduction method of birdsong sound based on improved adaptive Kalman filtering
Author:
Affiliation:

1.School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China; 2.Hainan Acoustics Laboratory, Institute of Acoustics , Chinese Academy of Sciences, Haikou 100190, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在海岛湿地等环境中,声学环境较为复杂,常伴有风声、雨声、海浪声等各种噪声。为了有效解决鸟鸣声处理中的这些干扰,提高鸟类物种识别的准确性。针对海岛湿地等复杂声环境下鸟鸣声实时在线监测中的噪声干扰问题,提出了一种基于自适应卡尔曼滤波(A-KF-LPC)的降噪方法。通过对鸟鸣声信号进行加权滤波,增强了A-KF-LPC滤波的稳定性,另外采用A-KF-LPC滤波对噪声进行抑制,并对声信号中不确定微小片段进行精确估计,逐步逼近真实情况。通过仿真,验证了A-KF-LPC滤波的性能,证明其能有效降噪。实验结果表明,在不同信噪比条件下,相较于传统卡尔曼滤波、最小均方误差(LMS)自适应滤波,A-KF-LPC滤波的鸟鸣声信号降噪方法能更有效地去除噪声;在-10dB噪声完全覆盖信号的条件下仍能滤除部分噪声。本研究提出的A-KF-LPC方法在声学信号处理领域具有重要的应用意义,为鸟类湿地生态系统研究提供了一种高效可行的解决方案,并具有潜在的应用前景。

    Abstract:

    In environments such as island wetlands, the acoustic environment is often complex, with various noise sources such as wind, rain, and ocean waves. To effectively address these interferences in bird song processing and improve the accuracy of species identification, a noise reduction method based on Adaptive Kalman Filtering with Linear Predictive Coding (A-KF-LPC) is proposed to tackle the issue of noise interference in real-time bird song monitoring under complex acoustic conditions in island wetlands. The A-KF-LPC filter enhances stability by weighted filtering bird song signals, while also suppressing noise and providing precise estimations of uncertain small segments within the acoustic signals, progressively approximating the real scenario. Simulations verify the performance of the A-KF-LPC filter, demonstrating its effectiveness in noise reduction. Experimental results show that under different signal-to-noise ratio conditions, the A-KF-LPC filtering method is more effective in denoising bird songs compared to traditional Kalman filtering and Least Mean Squares (LMS) adaptive filtering methods. Even under conditions where the signal is fully masked by -10dB noise, the method can still filter out part of the noise. The A-KF-LPC method proposed in this study holds significant application value in the field of acoustic signal processing, offering an efficient and feasible solution for research on bird species in wetland ecosystems, with potential for broader applications.

    参考文献
    相似文献
    引证文献
引用本文

王浩然,张纯,张国辉,王文卓,王娜娜.基于改进自适应卡尔曼滤波的鸟鸣声降噪方法研究[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-08