基于混合卷积增强和内容感知注意力的跨模态行人重识别
DOI:
作者:
作者单位:

南京邮电大学理学院,江苏南京 210023

作者简介:

通讯作者:

基金项目:


Hybrid Convolutional Enhancement and Content-aware Attention for Cross-modality Person Re-Identification
Author:
Affiliation:

College of Science, Nanjing University of Posts and Telecommunications, Nanjing, Jiangsu 210003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    跨模态行人重识别作为计算机视觉领域的研究热点,旨在解决不同成像条件下的行人匹配问题。现有研究着重于提取模态共享特征,但不能充分挖掘鉴别行人身份至关重要的细节特征。为了解决该问题,提出了一种基于混合卷积增强和内容感知注意力(Hybrid Convolutional Enhancement and Content-aware Attention, HCECA)的跨模态行人重识别方法,旨在提取更富含细节信息的行人特征。具体来说,首先在主干网络中嵌入混合卷积增强(Hybrid Convolutional Enhancement, HCE)模块,捕获更丰富的跨模态特征表示,提高特征的区分度和鲁棒性;然后,通过内容感知注意力(Content-aware Attention, CA)模块来挖掘丰富的细节信息,以提升行人特征的区分性。最后,在SYSU-MM01和RegDB数据集上进行了实验,提出的HCECA在SYSU-MM01数据集的全搜索模式下,Rank-1和mAP分别达到72.21%和81.84%,在RegDB数据集上可见-红外模式下,Rank-1和mAP分别达到92.23%和85.08%,均优于现有的跨模态行人重识别方法。

    Abstract:

    Cross-modality person re-identification (Re-ID), as a research hotspot in the field of computer vision, aims to solving the challenge of matching pedestrians across varying imaging conditions. Existing methods focus on extracting modality-shared features, but they fail to fully mine the detailed features that are crucial for discriminative person identities. To address this issue, a hybrid convolutional enhancement and content-aware attention (HCECA) for cross-modality person re-identification is proposed, which aims to extract pedestrian features with more detailed information. Specifically, a hybrid convolutional enhancement (HCE) module is embedded in the backbone network to capture richer cross-modality feature representation, enhancing the distinctiveness and robustness of the features. In addition, a content-aware attention (CA) module is employed to mine rich detailed information, thereby improving the discriminability of pedestrian features. Finally, experiments are performed on the SYSU-MM01 and RegDB datasets. The proposed HCECA attains the Rank-1 accuracy of 72.21% and the mAP of 81.84% in the all-search mode on the SYSU-MM01 dataset, while achieving the Rank-1 accuracy of 92.23% and the mAP of 85.08% in the visible-infrared mode on the RegDB dataset. Both results outperform those of current cross-modality person re-identification methods.

    参考文献
    相似文献
    引证文献
引用本文

杨真真,吴心怡.基于混合卷积增强和内容感知注意力的跨模态行人重识别[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-04