基于注意力机制的双通道多特征卷积脑电信号分类
DOI:
作者:
作者单位:

1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,南京210023;2.南京邮电大学射频集成与微组装技术国家地方联合工程实验室,南京 210023

作者简介:

通讯作者:

基金项目:


Dual-Channel Multi-Feature Convolutional EEG Signal Classification Based on Attention Mechanism
Author:
Affiliation:

1.School of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China; 2.Nation-Local Joint Project Engineering Lab of RF Integration & Micropackage, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    基于稳态视觉诱发电位(Steady-state visual evoked potential, SSVEP)的脑机接口正在人机交互系统中快速发展,但短时间窗下的SSVEP信号分类依然存在精度低、特征提取不充分等问题。本文提出了一种基于注意力机制的双通道多特征卷积神经网络(Attention Enhancement-Dual Channel Multi-Feature Convolutional Neural Networks,AE-dCNN),该网络首先利用通道注意力机制对不同通道的特征进行加权来增强有用信息的表示,然后通过两个并行的通道分别提取信号的时域和频域特征,最后将特征融合后进行分类。在公共和自建数据集上进行了跨被试和受试者独立实验,结果表明,本文提出的AE-dCNN模型在跨被试实验中达到了最高94.38%的准确率,在受试者独立实验中达到92.36%的准确率。同时,本文还探究了KAN(Kolmogorov–Arnold Networks)结构在脑电信息处理领域的应用,结果表明KAN模型比MLP(Multilayer Perceptron)模型在多数时间窗下有更高的准确率。

    Abstract:

    Brain-computer interfaces (BCIs) based on steady-state visual evoked potential (SSVEP) are rapidly advancing in human-computer interaction systems. However, the classification of SSVEP signals in short time windows still faces challenges such as low accuracy and insufficient feature extraction. In this paper, we propose an Attention Enhancement-Dual Channel Multi-Feature Convolutional Neural Network (AE-dCNN). The network first applies a channel attention mechanism to weight the features of different channels, enhancing the representation of useful information. Then, two parallel channels are employed to extract time and frequency domain features from the signals, respectively, and the extracted features are fused for classification. Cross-subject and subject-independent experiments were conducted on both public and self-built datasets. The results demonstrate that the proposed AE-dCNN model achieves a highest accuracy of 94.38% in cross-subject experiments and 92.36% in subject-independent experiments. Additionally, we explored the application of the Kolmogorov–Arnold Networks (KAN) structure in EEG signal processing. The results indicate that the KAN model outperforms the Multilayer Perceptron (MLP) model in terms of accuracy across most time windows.

    参考文献
    相似文献
    引证文献
引用本文

张学军,刘济玮,李夏芸.基于注意力机制的双通道多特征卷积脑电信号分类[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-09-15