基于改进YOLOv8n的道路裂缝检测轻量化模型
DOI:
作者:
作者单位:

南京邮电大学物联网学院,南京,210003

作者简介:

通讯作者:

基金项目:


A Lightweight Road Crack Detection Model Based on improved YOLOv8n
Author:
Affiliation:

School of Internet of Things, Nanjing University of Posts and Telecommunications, Nanjing 210003, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对道路裂缝外观特征易受环境干扰、细小裂缝漏检率高、检测设备计算资源受限的问题,提出了轻量级检测模型MCA-YOLO-A。该模型基于YOLOv8n,用更轻量的MobileNetV3特征提取网络来代替原主干网络,并融合了精确空间信息的CA注意力模块,提高了特征提取能力。同时,引入了适用于轻量级网络的Alpha-IOU损失函数,使得网络整体性能提升。此外,增加了小目标检测层,提升细小裂缝的识别精度。MCA-YOLO-A模型在道路裂缝数据集上平均精度均值mAP_0.5和F1分数分别达到0.930和0.893,相较于原YOLOv8n模型提升了7.0%和9.7%,参数量仅为6.0M,减少了4.8%,检测速度达到95帧/s。实验结果证明,该模型具备高精度、轻量化以及出色的泛化能力,更适合应用于计算资源受限的嵌入式系统和移动终端等场景。

    Abstract:

    To address the challenges of road crack appearance characteristics being susceptible to environmental interference, high miss detection rate of fine cracks, and limited computational resources of inspection equipment, a lightweight detection model, MCA-YOLO-A, is proposed. The model is based on YOLOv8n, replacing the original backbone with a lighter MobileNetV3 feature extraction network, and integrating a CA attention module that accurately captures spatial information, thereby enhancing the capability of feature extraction. Meanwhile, the Alpha-IOU loss function suitable for lightweight networks is introduced, which makes the overall performance of the network improved. In addition, a small target detection layer is added to improve the recognition accuracy of fine cracks. The average precision of MCA-YOLO-A model on road crack data sets is 0.930 and 0.893, respectively, which is 7.0% and 9.7% higher than that of the original YOLOv8n model, and the parameter quantity is only 6.0M, which is 4.8% lower, and the detection speed reaches 95 frames/s. The experimental results demonstrate that the model is highly accurate, lightweight, and capable of generalization, which makes it more suitable for deployment in scenarios with limited computational resources such as embedded systems and mobile devices.

    参考文献
    相似文献
    引证文献
引用本文

朱佳慧,刘艺,张登银.基于改进YOLOv8n的道路裂缝检测轻量化模型[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-14