基于DID-AugGAN的小样本缺陷图像生成与数据增强算法
DOI:
作者:
作者单位:

1 江西理工大学电气工程与自动化学院,江西 赣州 341000;2 江西理工大学理学院,江西 赣州 341000;3 多维智能感知与控制江西省重点实验室,江西 赣州 341000

作者简介:

通讯作者:

基金项目:


A Few-Shot Learning Algorithm for Defect Image Generation and Data Augmentation Based on DID-AugGAN
Author:
Affiliation:

1School of Electrical Engineering and Automation,Jiangxi University of Scienceand Technology,Ganzhou 341000,Jiangxi,China;2 School of Science,Jiangxi University of Science and Technology,Ganzhou 341000,Jiangxi,China;3Jiangxi Province Key Laboratory of Multidimensional Intelligent Perception andControl,Ganzhou 341000,Jiangxi,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对小样本条件下生成对抗网络生成缺陷图像质量低、不真实且多样性差的问题,本文提出一种缺陷图像生成算法(Defect Image Data Augmentation Generative Adversarial Network,DID-AugGAN),旨在实现小样本缺陷图像的数据增强。首先,为解决传统卷积在有限数据集中难以有效学习图像中非刚性特征的问题,设计可学习偏移卷积,以提高模型对图像语义信息的学习能力;其次,为避免关键缺陷特征丢失,提升局部特征之间的关联性,设计多尺度坐标注意力模块,重点关注缺陷位置信息;然后,为提高网络对输入图像局部信息的判别能力,重新设计判别器网络架构,使其从传统的单一前馈网络转变为包含对称编码与解码路径的UNet-like结构;最后,将DID-AugGAN与原算法在Rail-4c轨道扣件缺陷数据集上进行对比实验,并利用分类网络MobileNetV3进行验证。实验结果表明,改进后的方法显著提高了IS(Inception Score),有效降低了FID(Fréchet Inception Distance)和LPIPS(Learned Perceptual Image Patch Similarity)指标,并且MobileNetV3分类准确率和F1分数也得到提高。该算法能稳定生成高质量的缺陷图像,有效扩充缺陷数据样本,满足下游任务需求。

    Abstract:

    To address the issues of low quality, lack of realism, and poor diversity in defect images generated by Generative Adversarial Networks (GANs) under small-sample conditions, this paper proposes a defect image generation algorithm, named Defect Image Data Augmentation Generative Adversarial Network (DID-AugGAN), aimed at enhancing defect image data under limited sample conditions. First, to overcome the difficulty of traditional convolutional networks in effectively learning non-rigid features in images from limited datasets, we design a learnable offset convolution to improve the model’s capability in capturing semantic information. Second, to prevent the loss of critical defect features and enhance the correlation among local features, we introduce a multi-scale coordinate attention module, which focuses on defect location information. Third, to enhance the discriminator’s ability to distinguish local details in input images, we redesign its architecture, transforming it from a conventional feedforward network into a UNet-like structure with symmetric encoding and decoding pathways. Finally, we conduct comparative experiments between DID-AugGAN and the baseline algorithm on the Rail-4c track fastener defect dataset, and validate the generated images using the MobileNetV3 classification network. Experimental results demonstrate that the proposed method significantly improves Inception Score (IS) while effectively reducing Fréchet Inception Distance (FID) and Learned Perceptual Image Patch Similarity (LPIPS). Moreover, the classification accuracy and F1-score of MobileNetV3 are also improved. The proposed DID-AugGAN can stably generate high-quality defect images, effectively augment defect data samples, and meet the requirements of downstream tasks.

    参考文献
    相似文献
    引证文献
引用本文

黄绿娥 ,邓亚峰 ,鄢化彪 ,肖文祥 .基于DID-AugGAN的小样本缺陷图像生成与数据增强算法[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-04