基于宽度学习和注意力机制的小样本通信 辐射源个体识别方法
DOI:
作者:
作者单位:

1.国防科技大学电子对抗学院,合肥 230037;2.31683部队,兰州 730000

作者简介:

通讯作者:

基金项目:


Few-Shot Specific Communication Emitter Identification Method Based on Broad Learning and Attention Mechanism
Author:
Affiliation:

1.College of electronic countermeasures, National University of Defense Technology, Hefei 230037, China;2.Unit 31683, Lanzhou 730000, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在小样本通信辐射源个体识别场景中,现有深度学习算法对通信辐射源个体特征提取困难,识别率不高。针对此问题,本文提出通过融合注意力机制和宽度学习构建浅层神经网络的识别方法。首先,引入宽度学习来简化网络模型,减轻小样本带来的过拟合现象;其次,构建节点注意力模块提高宽度神经网络在小样本条件下特征提取能力;最后,在公开数据集上验证提出方法的有效性。结果表明,在少量样本条件下相比深度学习方法,本文提出的方法改善了深度学习网络的过拟合现象,加强了宽度学习方法的特征提取能力,提高了识别准确率。

    Abstract:

    Under the condition of few-shot specific communication emitter identification, the difficulty of extracting individual features of communication radiation source by the existing deep learning algorithm increases, and the recognition rate decreases. To solve this problem, this paper proposes a recognition method to construct a shallow neural network by fusing attention mechanism and broad learning. Firstly, broad learning is introduced to simplify the network model and reduce the overfitting phenomenon caused by small samples; secondly, the node attention module is constructed to improve the feature extraction ability of the broad neural network under the condition of small samples; and finally, the effectiveness of the proposed method is verified on the public dataset. The results show that compared with the deep learning method with a small number of samples, the proposed method improves the overfitting phenomenon of the deep learning network, strengthens the feature extraction ability of the broad learning method, and improves the recognition accuracy.

    参考文献
    相似文献
    引证文献
引用本文

陈宇鹏,刘辉,任高星,杨俊安.基于宽度学习和注意力机制的小样本通信 辐射源个体识别方法[J].数据采集与处理,,():

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-07-05