基于双残差LSTM和DCGAN的脑电信号驱动视觉图像重建模型
作者:
作者单位:

昆明理工大学信息工程与自动化学院,昆明 650500

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61861023)。


EEG Signal-Driven Visual Image Reconstruction Model Based on Double Residual LSTM and DCGAN
Author:
Affiliation:

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

National Natural Science Foundation of China (No.61861023).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    近年来,计算机视觉的进步使基于脑电信息重建图像成为可能,这在医学图像重建和脑机接口等领域具有重要意义。然而,由于脑电信号的复杂性和时序特性,现有模型在特征提取和图像生成任务上面临诸多挑战。为此,本文提出了一种基于双残差长短期记忆网络(Long short-term memory,LSTM)和深度卷积生成对抗网络(Deep convolution generative adversarial network,DCGAN)的脑电信号驱动视觉图像重建模型。该模型引入基于注意力残差网络和三元组损失函数的长短期记忆网络(LSTM network based on attention residual network and triplet loss,ARTLNet),以提升脑电信号特征提取的质量。ARTLNet融合了残差网络、长短期记忆网络和注意力机制,通过残差连接改善深层网络训练,长短期记忆网络捕捉时间序列特征,注意力机制增强对关键特征的关注;同时结合批量归一化和全局平均池化,确保信号稳定传递。在图像生成阶段,模型引入自行设计的DCGAN与特征融合策略,有效提升了生成图像的质量和多样性。实验结果表明,改进后的ARTLNet在Characters和Objects数据集上,结合不同的分类和聚类算法均获得了更高的准确率;所提模型在图像生成质量方面也表现优越,尤其在图像清晰度和类别区分度方面展现出显著优势。

    Abstract:

    Reconstructing visual images from electroencephalogram (EEG) signals has become an emerging frontier in brain-computer interface (BCI) research, offering substantial potential in medical image reconstruction, neural decoding, and cognitive state analysis. However, the inherently noisy, low-amplitude, and highly temporal characteristics of EEG signals pose considerable challenges to robust feature extraction and high-fidelity image synthesis. To address these limitations, this study aims to establish an effective EEG-driven visual reconstruction framework capable of capturing fine-grained temporal dynamics while ensuring semantic consistency in the generated images. The proposed model integrates a double residual long short-term memory (LSTM) architecture with a self-designed deep convolutional generative adversarial network (DCGAN). Specifically, an LSTM network based on attention residual network and Triplet loss (ARTLNet) is constructed to improve EEG feature extraction by combining residual learning, temporal modeling, and self-attention mechanisms. Batch normalization and global average pooling are further employed to enhance signal stability and suppress feature redundancy. In the reconstruction stage, a customized DCGAN incorporating feature fusion is adopted to enrich semantic representation and improve image clarity and diversity. Experimental evaluations on both Characters and Objects EEG datasets demonstrate that ARTLNet achieves consistently higher classification and clustering accuracy across multiple algorithms compared with baseline LSTM and non-residual architectures. The generated images exhibit clearer structural details and more distinguishable category attributes, verifying the effectiveness of the proposed generative strategy. The results demonstrate that the combination of residual enhanced temporal modeling and feature-fusion-based adversarial generation can significantly improve EEG-driven visual reconstruction performance. This study confirms the viability of exploiting advanced deep learning mechanisms to decode and visualize EEG information with improved interpretability, providing methodological support for future BCI-based image reconstruction and neural representation studies.

    参考文献
    相似文献
    引证文献
引用本文

倪哲文,全海燕.基于双残差LSTM和DCGAN的脑电信号驱动视觉图像重建模型[J].数据采集与处理,2026,(1):244-258

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-12-19
  • 最后修改日期:2025-05-08
  • 录用日期:
  • 在线发布日期: 2026-02-13