基于可变形注意力和多尺度多实例学习的全切片病理图像分类方法
作者:
作者单位:

南京航空航天大学人工智能学院脑机智能技术教育部重点实验室,南京211106

作者简介:

通讯作者:

基金项目:


Whole Slide Pathology Image Classification Method Based on Deformable Attention and Multi-scale Multi-instance Learning
Author:
Affiliation:

Key Laboratory of Brain-Machine Intelligence Technology, Ministry of Education, College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    全切片图像(Whole slide images, WSIs)是病理学诊断的金标准。准确的组织病理图像分类为肿瘤的类型、分级和分期提供了详细信息,对癌症预后和治疗策略选择具有重要意义。目前,在计算病理学领域中,基于多实例学习(Multi-instance learning, MIL)的分析方法正成为针对WSIs分类问题的主流方法,但该方法大多针对单一尺度病理图像展开,无法在不同层次上理解癌症的产生与发展机制。此外,病理图像的高分辨率特性以及不同尺度病理图像蕴含信息的差异性,也给高效分析单一尺度内的病理图像块以及融合不同尺度下的病理信息带来挑战。为此,本文提出了一种基于可变形注意力和多尺度多实例学习(Deformable attention and multi-scale multi-instance learning, DMSMIL)的全切片病理图像分类方法。具体而言,该方法通过设计可变形注意力分支学习尺度内不同图像块的关联,提升了注意力计算的效率。同时,设计了基于最优传输(Optimal transport, OT)的关联算法融合不同尺度的病理图像,实现了对多尺度病理信息的高效对齐。在乳腺癌亚型分类和肺癌亚型分类任务上的实验结果表明,所提方法分别取得了85.39%和92.00%的分类准确率,相较于主流的WSIs分类方法,性能得到了显著提升。

    Abstract:

    Whole slide images (WSIs) serve as the golden standard for pathological diagnosis, and their accurate classification provides critical information on tumor type, grade, and stage, which is essential for cancer prognosis and treatment strategy selection. In computational pathology, multi-instance learning (MIL) has become the mainstream approach for WSI classification. However, most existing MIL methods focus on single-scale pathological images, limiting the understanding of cancer development and progression mechanisms across different levels. Additionally, the high resolution of WSIs and information discrepancies across scales pose challenges to efficiently integrating and analyzing patches both within a single scale and across multiple scales. To address these issues, this paper proposes a WSI classification method based on deformable attention and multi-scale multi-instance learning (DMSMIL). Specifically, a deformable attention branch is designed to learn associations among patches within the same scale, enhancing attention computation efficiency. Meanwhile, an optimal transport (OT)-based association algorithm is developed to integrate pathological information across different scales, enabling efficient multi-scale information alignment. Experimental results on breast cancer and lung cancer subtype classification tasks demonstrate that the proposed method achieves classification accuracies of 85.39% and 92.00%, respectively, outperforming mainstream WSI classification methods. The proposed DMSMIL effectively integrates multi-scale pathological features and improves the accuracy of WSI-based cancer subtype classification, providing a promising approach for computational pathological diagnosis.

    参考文献
    相似文献
    引证文献
引用本文

薛保,周俊杰,邵伟.基于可变形注意力和多尺度多实例学习的全切片病理图像分类方法[J].数据采集与处理,2026,(1):231-243

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-12
  • 最后修改日期:2024-12-02
  • 录用日期:
  • 在线发布日期: 2026-02-13