基于张量低秩学习的多视图子空间聚类方法
作者:
作者单位:

1.南京邮电大学计算机学院、软件学院、网络空间安全学院,南京210023;2.江苏省高性能计算与智能处理工程研究中心,南京 210023

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2019YFB2103003)。


Multi-view Subspace Clustering Method Based on Tensor Low-Rank Learning
Author:
Affiliation:

1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.Jiangsu HPC and Intelligent Processing Engineer Research Center, Nanjing 210023, China

Fund Project:

National Key Research and Development Program of China (No.2019YFB2103003).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    多视图聚类是一种机器学习技术,通过整合多源信息可以显著提升聚类性能。然而,现有方法在处理多视图数据时未能充分利用张量低秩表示与亲和度矩阵之间的内在相关性,同时在应对数据缺失、噪声和异常值时表现不佳。为解决这些问题,提出了一种基于张量低秩学习的多视图子空间聚类方法。该方法通过对数据样本施加低秩约束,深入挖掘数据点之间的高阶关联性,精确识别数据的子空间结构。同时,引入张量奇异值分解和加权张量核范数最小化方法,对亲和度矩阵进行优化,将聚类问题转化为一个凸优化问题求解,确保了模型的鲁棒性和效率。此外,所提方法在捕捉多视图数据复杂关联性方面表现出色,能够更准确地识别数据的潜在子空间结构。实验结果表明,所提方法在4类基准数据集上的性能优于现有方法,具有高的准确性和鲁棒性。

    Abstract:

    Multi-view clustering is a powerful technique for improving analytical performance by fusing complementary multi-source information. However, there are deficient in two ways: It neglects the strong inherent correlation between representation tensors and affinity matrices, and the separate two-step strategy of representation learning and clustering leads to lack of association between these processes, rendering inefficient in handling missing data, noise and outliers in multi-view data processing. In order to address these issues, this paper proposes a multi-view sub-space clustering method based on tensor low-rank learning. A methodology is put forward for the analysis of high-order correlations among data points and the identification of the intrinsic structure of the data. The method involves the introduction of a high-order tensor constraint based on low-rank representation (LRR) and the adoption of tensor nuclear norm minimization (TNNM) based on tensor singular value decomposition (t-SVD). This approach facilitates the transformation of the original non-convex optimization problem into a solvable convex one. The application of an adaptive weighted Schatten-p norm has been utilized to capture the inherent differences between singular values, with the assistance of their prior information. Spectral clustering has been integrated into a unified framework for the purpose of optimizing the affinity matrix, with a view to more effectively characterizing clustering structures. The inexact augmented Lagrange multiplier (ALM) method has been utilized to decompose the model into four solvable sub-problems for the purpose of efficient optimization. Comprehensive experiments are conducted on six benchmark datasets spanning facial images, news stories, handwritten digits and general objects, with systematic optimization of key parameters to ensure reliability. The findings demonstrate that the proposed method exhibits a substantial enhancement in performance when compared to four contemporary algorithms, namely t-SVD-MSC, ETLMSC, WTNNM and MLAN. The proposed method demonstrated an accuracy of 0.981 on the Yale dataset, 0.995 on the UCI-Digits dataset, and 0.971 on the Scene-15 dataset. The proposed method effectively increases the robustness of the affinity matrix against noise and outliers. It accurately extracts the intrinsic subspace structure of multi-view data and demonstrates excellent practical performance and strong generalization ability in the analysis of high-dimensional and incomplete multi-view data.

    参考文献
    相似文献
    引证文献
引用本文

史德胜,徐鹤,李鹏.基于张量低秩学习的多视图子空间聚类方法[J].数据采集与处理,2026,(1):215-230

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-20
  • 最后修改日期:2024-12-12
  • 录用日期:
  • 在线发布日期: 2026-02-13