基于多重伪影抑制与多级融合的高动态范围成像
作者:
作者单位:

昆明理工大学信息工程与自动化学院,昆明650500

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62161015, 62276120); 云南省基础研究专项(202301AV070004)。


High Dynamic Range Imaging with Multiple Artifact Suppression and Multilevel Fusion
Author:
Affiliation:

School of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650500, China

Fund Project:

National Natural Science Foundation of China (Nos.26161015,62276120); Yunnan Province Basic Research Special Project (No.202301AV070004).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由于现有成像设备的局限性,难以直接获取高动态范围(High dynamic range,HDR)图像。HDR成像技术旨在通过处理低动态范围(Low dynamic range,LDR)图像来生成HDR图像。现有的大多数方法通过融合多张不同曝光的图像来重建HDR图像。然而,由于前景和背景的相对运动,导致最终的重建结果中出现伪影。现有方法仅在融合多张不同曝光的图像前进行伪影消除。但这样会导致最终的HDR图像的质量严重依赖于融合前的伪影抑制结果。而伪影抑制的不理想导致融合过程中引入的伪影信息在后续重建过程中难以消除。基于此,提出了一种对重建特征进行伪影多重抑制和信息多级融合的网络框架,以高效重建HDR图像。通过多重伪影抑制块(Multiple artifact suppression block,MASB)来处理不同图像和特征之间的差异。与现有方法仅对融合前的图像或特征进行处理不同,在重建过程中对特征进行多重伪影抑制,从而进一步抑制重建特征中的伪影。同时,为了更好地利用非参考输入图像的特征,提出了多级融合块(Multilevel fusion block,MFB),在多级融合模块里进一步获取非参考图像中的互补信息。在多个数据集上的实验对比结果显示,所提方法在主观视觉效果和客观指标上均取得了更优异的表现。

    Abstract:

    Due to the limitations of existing imaging equipment, it is difficult to obtain high dynamic range (HDR) images directly. High dynamic range imaging technology is designed to generate HDR images by processing low dynamic range (LDR) images. Most existing deep learning methods reconstruct HDR images by fusing multiple images with different exposures. However, due to the relative movement of foreground and background, artifacts appear in the final reconstruction result. Existing methods only perform artifact elimination before fusing multiple images with different exposures, which leads to a heavy dependence of the final HDR image quality on the artifact suppression results before fusion. Moreover, the artifact information introduced during the fusion process is difficult to eliminate in subsequent reconstruction due to unsatisfactory artifact suppression. To address this, we propose a network framework for multi-artifact suppression of reconstructed features and multilevel information fusion to efficiently reconstruct HDR images. First, we handle the differences between different images and features through multiple artifact suppression. Unlike existing methods that only process images or features before fusion, we perform multiple artifact suppression block (MASB) on the features during the reconstruction process to further suppress artifacts in the reconstructed features. Simultaneously, to better utilize the features of non-reference input images, we propose a multilevel fusion block (MFB), through which complementary information from non-reference images can be further extracted. Experimental comparisons on multiple datasets demonstrate that the proposed method achieves better performance in both subjective visual effects and objective metrics.

    参考文献
    相似文献
    引证文献
引用本文

罗俊成,谢明鸿,张亚飞,李华锋.基于多重伪影抑制与多级融合的高动态范围成像[J].数据采集与处理,2026,(1):187-201

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-11-26
  • 最后修改日期:2025-02-25
  • 录用日期:
  • 在线发布日期: 2026-02-13