基于调和函数理论的二阶段遥感目标实例分割算法
作者:
作者单位:

北京航空航天大学宇航学院,北京 100191

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62471014, 62125102, U24B20177)。


Two-Stage Remote Sensing Object Instance Segmentation Based on Harmonic Function Theory
Author:
Affiliation:

School of Astronautics, Beihang University, Beijing 100191, China

Fund Project:

National Natural Science Foundation of China (Nos.62471014, 62125102, U24B20177).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文提出了一种基于调和背景建模的二阶段实例分割方法,可实现复杂遥感图像背景下目标的快速且精细的实例分割。方法包括2个阶段:第1阶段采用可灵活替换的目标检测器,如YOLOv10(You only look once v10)或DINO(DETR with improved denoising anchor boxes),获取候选目标框;第2阶段设计为“即插即用”的掩膜计算模块,无需额外训练即可基于调和函数模型对背景进行快速回归,并计算前景掩膜,从而提升掩膜计算的精度与鲁棒性。本文方法以调和函数理论及复分析中的相关定理为数学基础,以Dirichlet问题为核心框架,创新性地提出利用局部边界信息推断全局背景的实例掩膜生成策略。通过将Dirichlet问题转化为最小二乘回归形式,算法兼具可实现性与灵活性。在NWPU VHR-10数据集上的实验结果表明,与典型方法相比,本文方法在包围框平均精度(Average precision of boxes, AP-Box)和掩膜平均精度(Average precision of masks, AP-Mask)指标上均取得更优表现,其中AP-Mask指标可以在设定交并比(Intersection over union, IoU)指标为50%时达到92.1%,较现有最佳结果提升2.5个百分点。结果验证了该方法在遥感目标分割任务中的有效性与应用潜力。

    Abstract:

    Remote-sensing instance segmentation often suffers from ambiguous object boundaries and cluttered backgrounds, while adding heavy mask heads can increase computational cost and reduce deployment flexibility. This paper aims to develop a fast, accurate, and detector-agnostic mask-generation scheme that can be integrated into existing detection pipelines with minimal engineering overhead and without extra training. We propose a two-stage framework that couples a replaceable object detector (e.g., YOLOv10 or DINO) with a plug-and-play harmonic background modelling (HBM) module. For each detected bounding box, HBM treats the local background as a harmonic function and reconstructs it by least-squares fitting of a truncated harmonic-polynomial basis. Boundary constraints are formed by sampling pixel values along the bounding-box boundary, and the coefficients are solved efficiently via the Moore-Penrose pseudoinverse. The foreground mask is then derived from the channel-wise residual between the original image and the reconstructed background, followed by a contrast-enhancing nonlinearity, Otsu thresholding, and connected-component filtering to suppress spurious fragments. The overall pipeline is fully decoupled from the detector: the detector is not modified or retrained, and the additional computation mainly comes from solving a small least-squares problem per proposal rather than processing full-resolution feature maps with a learned segmentation head. Extensive experiments on NWPU VHR-10 and iSAID-mini datasets demonstrate consistent gains in both box and mask metrics, while maintaining high throughput. With DINO as the proposal generator, DINO+HBM achieves AP-Box and AP-Mask of 69.3% and 66.3% on NWPU VHR-10 and reaches AP-Mask-50 of 92.1%, improving the previous best result by 2.5 percentage points. On iSAID-mini, DINO+HBM obtains AP-Box and AP-Mask of 55.3% and 42.3% with AP-Mask-50 and AP-Mask-75 of 72.1% and 53.3%, showing clear benefits under more complex scenes. Ablation studies further verify the roles of truncation order, constraint-point number, and sampling strategy, and indicate that bounding-box boundary sampling is more stable than random sampling for background regression and mask extraction without sacrificing speed. The proposed training-free harmonic background suppression provides an efficient way to obtain boundary-faithful instance masks in remote-sensing images and offers a practical, modular add-on to detector-based pipelines when rapid inference and easy deployment are required.

    参考文献
    相似文献
    引证文献
引用本文

李泽坤,史振威,邹征夏.基于调和函数理论的二阶段遥感目标实例分割算法[J].数据采集与处理,2026,(1):147-159

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-02-24
  • 最后修改日期:2025-10-15
  • 录用日期:
  • 在线发布日期: 2026-02-13