通用航空集群的高精度时钟同步算法
作者:
作者单位:

1.北京航空航天大学电子信息工程学院,北京 100081;2.贝尔法斯特女王大学, 贝尔法斯特 BT7 1NN

作者简介:

通讯作者:

基金项目:

中央高校基本科研业务费专项资金;国家自然科学基金(62471018)。


High-Precision Clock Synchronization Algorithm for General Aviation Swarms
Author:
Affiliation:

1.School of Electronic and Information Engineering, Beihang University, Beijing 100081, China;2.Queen’s University Belfast, Belfast BT7 1NN, United Kingdom

Fund Project:

Fundamental Research Funds for the Central Universities;National Natural Science Foundation of China (No. 62471018).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    高精度时钟同步是通用航空集群协同运作的核心技术之一。当前往返时间(Round-trip time,RTT)同步技术中,机动状态下的非等应答时延影响常被忽略,易引发显著内部处理时延偏差。本文提出一种基于相对速度补偿的RTT时钟同步算法。该算法在解析应答航空节点内部处理环节的非均等应答时延(Unequal reply time, URT)原理的基础上,设计基于批量估计的时延建模与补偿策略,可有效降低同步误差。进一步,该算法设计卡尔曼滤波与反向传播(Back propagation,BP)神经网络级联的授时/守时策略,通过对时钟偏差与频率偏差的预测和修正,能够有效抑制机动状态下的观测噪声。仿真结果表明,所提出的时钟同步算法优于现有同步新算法,且实现了纳秒级同步精度。

    Abstract:

    High-precision clock synchronization is a fundamental technology enabling collaborative functions such as distributed sensing, formation control, and data fusion in general aviation swarms. However, in high-dynamic maneuvering scenarios, traditional round-trip time (RTT) synchronization methods suffer from significant accuracy degradation due to the coupling effects of relative motion-induced Doppler shifts and stochastic unequal reply time (URT) delays within airborne nodes. To address these challenges, this paper proposes a novel RTT clock synchronization algorithm that integrates relative-velocity compensation with a hybrid data-driven error correction mechanism. First, a kinematic model considering radial relative velocity is established to explicitly correct propagation delays caused by node mobility. Building on this, a batch-estimation-based delay modeling strategy is introduced. By extracting statistical features from multi-cycle timing data, this method calculates the equivalent processing delay sensitivity to eliminate systematic URT deviations. Furthermore, to address non-linear clock frequency drifts and complex environmental noise that traditional linear filters cannot resolve, a cascaded time-keeping architecture is developed. This architecture combines a Kalman filter (KF) for real-time state recursion with a Back-Propagation (BP) neural network for residual prediction. The BP network utilizes a lightweight topology to learn and compensate for non-linear errors based on inputs such as signal-to-noise ratio (SNR) and historical residuals. Extensive Monte Carlo simulations are conducted across continuous parameter spaces, including relative velocities up to 2 000 m/s and SNRs ranging from 4 dB to 20 dB. The numerical results demonstrate that the proposed algorithm achieves superior robustness and accuracy. Specifically, under strong URT interference (80 ns), the synchronization error remains stable below 0.25 ns. In low-SNR environments (4 dB), the root mean square error (RMSE) is controlled at approximately 0.2 ns, which represents a nearly tenfold improvement compared to the baseline.

    参考文献
    相似文献
    引证文献
引用本文

陈羽,韩腾飞,杨朋,熊泽辉,曹先彬.通用航空集群的高精度时钟同步算法[J].数据采集与处理,2026,(1):89-108

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-11-13
  • 最后修改日期:2026-01-03
  • 录用日期:
  • 在线发布日期: 2026-02-13