无人机多模态超宽谱认知仪研究
作者:
作者单位:

南京航空航天大学电子信息工程学院,南京 211106

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62427801)。


Research on UAV Multi-modal Ultra-Wide Spectrum Cognitive Instrument
Author:
Affiliation:

College of Electronic and Information Engineering, Nanjing University of Aeronautics & Astronautics, Nanjing, 211106, China

Fund Project:

National Natural Science Foundation of China (No. 62427801).

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    本文设计了一种无人机(Unmanned aerial vehicle, UAV)多模态超宽谱认知仪,通过深度融合可见光、红外、合成孔径雷达(Synthetic aperture radar,SAR)及无线频谱等多模态传感器构建智能遥感系统,旨在攻克传统无人机遥感的根本性瓶颈:续航时间短严重制约探测范围、有效载荷不足限制多模态感知能力、机载算力薄弱导致实时处理延迟、通信容量有限阻碍高保真态势评估。本文设计方案针对续航挑战,采用活塞发动机与锂电池协同的混合能源构型,结合垂直起降(Vertical take-off and landing, VTOL)飞翼布局,显著提升航时效能;为应对载荷限制,开发复眼多目相机实现大视场高分辨率成像,集成W波段轻小型SAR突破亚毫米级振动补偿技术,支撑空-时-频多维度协同感知;为化解实时处理困境,基于时空配准框架与轻量化深度学习模型,构建数据层-特征层-语义层多层次融合机制,将低可观测目标检测精度提升至90%以上;针对通信瓶颈,创新生成式编码技术结合知识图谱驱动的态势重建,通过无参考质量评估模型量化语义保真度,实现超 400 倍压缩下的高保真三维态势生成。该仪器在国防侦察领域成功实现复杂电磁环境中隐蔽目标实时追踪,在应急救援中完成洪涝灾害监测与三维重建等关键任务,验证了多模态超宽谱认知在复杂场景的实用价值。

    Abstract:

    The unmanned aerial vehicle (UAV) multi-modal ultra-wide spectrum cognitive instrument constructs an intelligent remote sensing system by deeply integrating visible light, infrared, synthetic aperture radar (SAR), and wireless spectrum sensors. It aims to overcome fundamental bottlenecks in traditional UAV remote sensing: Limited endurance severely constraining detection range, insufficient payload capacity restricting multi-modal perception, weak onboard computing capability causing real-time processing delays, and finite communication capacity hindering high-fidelity situational assessment. To address endurance challenges, the design employs a hybrid energy configuration combining piston engines and lithium batteries with a vertical take-off and landing (VTOL) flying-wing layout, significantly enhancing operational longevity. For payload limitations, it develops a compound-eye multi-camera array for wide-field high-resolution imaging and integrates a W-band miniaturized SAR radar with submillimeter-level vibration compensation technology, enabling air-time-frequency multi-dimensional collaborative perception. To resolve real-time processing constraints, a spatiotemporal registration framework and lightweight deep learning model establish a multi-level fusion mechanism (data-feature-semantic layers), elevating detection accuracy for low-observable targets beyond 90%. Targeting communication bottlenecks, innovative generative coding combined with knowledge-graph-driven situational reconstruction achieves high-fidelity 3D situational generation under 400-fold compression, quantified via a no-reference quality assessment model for semantic fidelity.Validated in defense reconnaissance for real-time tracking of concealed targets in complex electromagnetic environments and in emergency response for flood monitoring and 3D reconstruction, the instrument demonstrates practical value in complex scenarios. Future research should deepen cross-modal semantic understanding optimization and dynamic cooperative control of UAV swarms to advance intelligent remote sensing toward real-time, autonomous cognitive evolution.

    参考文献
    相似文献
    引证文献
引用本文

施云鹤,张小飞,吴启晖.无人机多模态超宽谱认知仪研究[J].数据采集与处理,2026,(1):28-52

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-11-12
  • 最后修改日期:2026-01-15
  • 录用日期:
  • 在线发布日期: 2026-02-13