基于FACNNCN的高分遥感影像场景分类方法
作者:
作者单位:

1.太原学院数学系,太原 030032;2.山西大学计算机与信息技术学院,太原 030006

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62072291; 62472269; 62272284; 62072294);山西省科技创新青年人才团队项目(202204051001015)。


Scene Classification Method of High-Resolution Remote Sensing Images Based on FACNNCN
Author:
Affiliation:

1.Department of Math, Taiyuan University, Taiyuan 030032, China;2.School of Computer and Information Technology, Shanxi University, Taiyuan 030006, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    高分遥感影像场景分类旨在对复杂的地表场景影像进行精确认知,对于高分遥感影像的理解和信息提取具有重要的意义。本文提出了一种高分遥感影像场景方法,该方法基于特征聚合卷积神经网络(Feature aggregated convolution neural network, FACNN)和向量胶囊网络(Capsule network, CapsNet),即FACNNCN网络。通过增加聚合特征提升场景分类中影像特征的区分力和鲁棒性,并基于向量胶囊网络表征场景影像中地物与场景的空间关系,有效弥补了当前基于卷积神经网络的高分遥感影像场景分类方法中普遍存在的场景影像特征提取不充分、地物空间特征欠考虑的不足。本文提出的方法在2个公共高分遥感影像场景分类数据集(UC Merced Land-Use和NWPU-RESISC45)上进行了测试,实验结果表明该方法的分类精度优于相关的对比方法。

    Abstract:

    High-resolution remote sensing image scene classification aims to accurately perceive complex surface scenes, which is significant for the understanding and information extraction of high-resolution remote sensing images. A new scene classification method based on feature aggregated convolution neural network (FACNN) and capsule network(CapsNet), named FACNNCN, is proposed in this paper. For the proposed method, the distinguish ability and robustness of convolutional features for scene classification are enhanced by adding aggregated features. Meanwhile, the spatial relationship between geographic entity and scene is represented based on CapsNet. Therefore, the proposed method can overcome some drawbacks usually found in existing high-resolution remote sensing image scene classification methods based on CNNs. For example, the extracted representative features of scene images are insufficient and the spatial features of geographical objects are lack of consideration. The method proposed in this paper is tested on two public high-resolution remote sensing image scene classification datasets (UC Merced Land-Use and NWPU-RESISC45). Experimental results show that the classification accuracy of FACNNCN is better than those of comparison methods.

    参考文献
    相似文献
    引证文献
引用本文

张婧,杨宇浩,曹峰,张超,李德玉.基于FACNNCN的高分遥感影像场景分类方法[J].数据采集与处理,2025,40(6):1637-1649

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-03-30
  • 最后修改日期:2024-10-16
  • 录用日期:
  • 在线发布日期: 2025-12-10