基于局部通道编码的轻量化人体姿态估计算法
作者:
作者单位:

上海理工大学健康科学与工程学院,上海 200093

作者简介:

通讯作者:

基金项目:

国家科技部项目(G2021013008);教育部中国高校产学研创新基金(2023RY011);上海理工大学医工交叉重点项目(1020308405,1022308502)。


Lightweight Human Pose Estimation Algorithm Based on Partial Channel Encoding
Author:
Affiliation:

School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对当前姿态估计模型存在计算复杂度高以及参数量大的问题,本文提出一种轻量级姿态估计算法。首先,在特征提取过程中引入局部通道编码(Partial channel encoding, PCE)模块,结合卷积神经网络与视觉编码器的优势,分别提取图像的局部特征和全局特征;接着在多尺度特征融合过程中引入加权特征融合,增强模型的多尺度特征融合能力以避免模型轻量化带来的精度降低的问题;之后在回归预测的过程中将人体检测和分类部分共享检测头,提高模型在姿态估计任务中的识别效率;最后将CIoU损失函数更换为PIoU损失函数,让模型更注重对中高质量检测框的识别准确度。实验结果表明,本文提出的模型相比于基础模型,参数量下降27%,计算量下降18%,准确度提升0.2%,既保证了识别的准确度,又可以实现检测算法的轻量化,为实现实时准确的姿态估计提供了有效手段。

    Abstract:

    Aiming at the problems of high computational complexity and large number of parameters in the current pose estimation model, this paper proposes a lightweight pose estimation algorithm. Firstly, the partial channel encoding (PCE) module is introduced in the feature extraction process, and the local and global features of the image are extracted respectively by combining the advantages of convolutional neural network and visual encoder. Then, the weighted feature fusion is introduced in the process of multi-scale feature fusion to enhance the multi-scale feature fusion ability of the model and avoid the problem of reduced accuracy caused by model lightweight. Then, in the process of regression prediction, the detection head of the human detection and classification parts is shared to improve the recognition efficiency of the model in the pose estimation task. Experimental results show that compared with the basic model, the proposed model reduces the number of parameters by 27% and the amount of computation by 18%, and increases the accuracy by 0.2%. It not only ensures the accuracy of recognition, but also realizes the lightweight of the detection algorithm, providing an effective means to achieve real-time accurate pose estimation.

    参考文献
    相似文献
    引证文献
引用本文

徐新智,何宏.基于局部通道编码的轻量化人体姿态估计算法[J].数据采集与处理,2025,40(6):1625-1636

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-10-08
  • 最后修改日期:2025-02-20
  • 录用日期:
  • 在线发布日期: 2025-12-10