基于卷积神经网络的多雷达协同抗欺骗式干扰方法
作者:
作者单位:

南京邮电大学电子与光学工程学院,南京 210023

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61801233);装备预研重点实验室基金(JKW202209)。


Multi-radar Collaborative Anti-deception Jamming Method Based on Convolutional Neural Network
Author:
Affiliation:

College of Electronic and Optical Engineering, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    现有多站融合技术聚焦于利用回波的幅度相关性和空间定位等直观特征,同时人工特征提取的全面性不足,易导致信号资源的浪费、特征提取不全和判别算法不够通用等问题。为解决这些问题,创新性地提出了一种融合多雷达协同检测与卷积神经网络的干扰识别策略,利用卷积神经网络深入挖掘回波数据中的未知信息,提取真假目标在多维深层特征上的差异,超越单一的空间相关性差异,实现欺骗干扰判别。最后,仿真实验验证了提出方法抗欺骗干扰的可行性,并分析了目标尺寸、多站雷达布站和相位误差对所提算法的影响。

    Abstract:

    Existing multi-station fusion technologies focus on utilizing intuitive features such as echo amplitude correlation and spatial location. However, the comprehensiveness of manual feature extraction is insufficient, which can easily lead to signal resource waste, incomplete feature extraction, and limited generalization of discrimination algorithms. To address this issue, this paper innovatively proposes a jamming identification strategy that integrates multi-radar cooperative detection with convolutional neural network. This approach leverages convolutional neural networks to deeply explore unknown information in echo data, extracting differences between real and false targets in multidimensional deep features, surpassing single spatial correlation differences, and achieving deception jamming identification. Finally, simulation experiments validate the feasibility of the proposed method in resisting deception jamming and analyze the effects of target size, multi-station radar deployment and phase errors on the proposed algorithm.

    参考文献
    相似文献
    引证文献
引用本文

赵珊珊,申琦,苗嘉宁.基于卷积神经网络的多雷达协同抗欺骗式干扰方法[J].数据采集与处理,2025,40(6):1518-1526

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-15
  • 最后修改日期:2024-11-27
  • 录用日期:
  • 在线发布日期: 2025-12-10