基于指针网络深度强化学习NOMA用户配对和功率分配方案
作者:
作者单位:

中国人民解放军陆军工程大学通信工程学院,南京 210007

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62471489,62271501);国家资助博士后研究人员计划(GZB20240996);江苏省自然科学基金(BK20240200);江苏省前沿引领技术基础研究重大项目(BK20212001)。


NOMA User Pairing and Power Allocation Scheme of Deep Reinforcement Learning Based on Pointer Network
Author:
Affiliation:

College of Communications Engineering, Army Engineering University of PLA, Nanjing 210007, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    为了解决非正交多址接入(Non-orthogonal multiple access, NOMA)在不完美串行干扰消除(Serial interference cancellation, SIC)条件下的快速配对和功率分配问题,提出一种基于深度强化学习的NOMA用户配对和功率优化方案。首先,考虑多用户NOMA不完美SIC的场景,以用户配对和用户发射功率分配因子为优化变量构建最大化系统可达通信速率的优化问题。分析了不完美SIC条件下用户使用NOMA配对的条件,并推出该条件下最大可达速率的用户功率分配。其次,将用户配对问题当作组合优化的问题,基于实时性的要求使用改进的指针网络设计了一种新型用户配对方案。仿真结果表明,该方案能够有效提升NOMA系统的可达速率,达到了最优的穷搜算法的99.8%,并具有实时性和适应用户数量动态变化的优势。

    Abstract:

    To solve the fast pairing and power allocation problem of non-orthogonal multiple access (NOMA) under imperfect serial interference cancellation (SIC) conditions, a deep reinforcement learning-based user pairing and power optimization scheme is proposed. First, this paper considers the scenario of imperfect SIC for multiuser NOMA, and constructs an optimization problem to maximize the system reachable communication rate with user pairing and user transmit power allocation factor as optimization variables. The condition of user pairing using NOMA under the imperfect SIC condition is analyzed, and the user power allocation for the maximum reachable rate under this condition is introduced. Second, the user pairing problem is treated as a combinatorial optimization problem, and a novel user pairing scheme is designed based on the real-time requirement using an improved pointer network. Simulation results show that this scheme can effectively improve the reachable rate of the NOMA system to 99.8% of that of the optimal exhaustive search algorithm. It achieves real-time performance and adapts to the dynamic change of the number of users.

    参考文献
    相似文献
    引证文献
引用本文

李国鑫,甘麒,陈瑾,焦雨涛,王海超,贺兴.基于指针网络深度强化学习NOMA用户配对和功率分配方案[J].数据采集与处理,2025,40(6):1477-1489

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-08-21
  • 最后修改日期:2024-12-19
  • 录用日期:
  • 在线发布日期: 2025-12-10