多无人机强弱信号混叠下的检测与识别方法
作者:
作者单位:

南京航空航天大学电子信息工程学院,南京 211106

作者简介:

通讯作者:

基金项目:

国家自然科学基金(62371231);江苏省前沿引领技术基础研究重大项目(BK20222001);江苏省重点研发计划项目(BE2023027)。


Detection and Identification Method for Multiple UAVs with Mixed Strong Weak Signals
Author:
Affiliation:

College of Electronic and Information Engineering, Nanjing University of Aeronautics &Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    由于不同无人机(Unmanned aerial vehicle, UAV)的距离差异,混叠信号往往具有不同的信噪比,且低空环境下存在各类干扰信号,进一步增加了识别的难度。针对上述问题,本文提出了多无人机混叠信号下的联合检测-分离-识别方案,该方案通过信号检测、信号分离和信号识别3个步骤,有效提升了不同信噪比混叠信号的检测与识别性能。首先,采用YOLO检测器在时频图上定位潜在无人机信号,在此基础上,提出了一种基于随机偏差的数据增强方法,以降低信号分离过程中的偏差。接着,利用YOLO分类器提取信号的带宽与持续时间特征,完成不同无人机信号的分类。最后,为进一步提高同型号无人机信号识别的精度,提出了加入注意力机制的ResNet模型和优化的Bagging集成学习方法。基于公开数据集的实验结果表明,所提方案在干扰信号与同型号无人机共存场景下的识别性能优于已有方案。

    Abstract:

    Due to the varying distances of different unmanned aerial vehicles (UAVs), the overlapping signals often exhibit different signal-to-noise ratios, and the presence of various interference signals in low-altitude environments further increases the difficulty of identification. To address these problems, this paper proposes a joint detection-separation-identification scheme for overlapping signals from multiple UAVs. The scheme effectively improves the detection and identification performance of overlapping signals with different SNRs through three steps: signal detection, signal separation, and signal identification. First, the YOLO detector is employed to locate potential UAV signals on the time-frequency spectrogram. Then, a data augmentation method based on random deviation is proposed to mitigate the bias in the signal separation process. Subsequently, the bandwidth and duration features of the signals are extracted using a YOLO-based classifier to achieve classification of distinct UAV signals. Finally, to further improve the recognition accuracy of signals from identical UAV models, an enhanced ResNet model integrated with attention mechanisms and an optimized Bagging ensemble learning method are proposed. Experimental results based on publicly available datasets demonstrate that the proposed scheme outperforms existing methods in scenarios where interference signals and UAVs of the same model coexist.

    参考文献
    相似文献
    引证文献
引用本文

王加琪,王威.多无人机强弱信号混叠下的检测与识别方法[J].数据采集与处理,2025,40(6):1464-1476

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-05-13
  • 最后修改日期:2025-10-09
  • 录用日期:
  • 在线发布日期: 2025-12-10