基于深度学习的阵列天线自适应波束形成研究综述
作者:
作者单位:

1.中国人民解放军陆军工程大学通信工程学院,南京 210001;2.南京熊猫汉达科技有限公司,南京 210001

作者简介:

通讯作者:

基金项目:


Review on Deep Learning-Based Adaptive Beamforming for Array Antennas
Author:
Affiliation:

1.College of Communications Engineering, Army Engineering University of PLA, Nanjing 210001, China;2.Nanjing Panda Handa Technology Co., Ltd., Nanjing 210001, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着阵列天线规模不断增加、抗干扰场景日益复杂,传统的自适应波束形成方法往往计算量大,深度学习凭借其强大的数据驱动能力,为突破传统自适应波束形成的性能瓶颈提供了新思路。本文系统综述了深度学习在阵列天线波束形成领域的研究现状和发展趋势。首先,回顾了从Howells-Applebaum自适应处理器到基于凸优化的鲁棒波束形成等传统波束形成算法的发展历程。其次,详细分析了卷积神经网络(Convolutional neural network, CNN)、循环神经网络(Recurrent neural network, RNN)、长短期记忆(Long short-term memory, LSTM)网络等深度学习模型在波束形成中的创新应用。研究表明,深度学习方法凭借其强大的非线性建模能力、端到端优化特性和环境适应性,在提升系统性能方面具有显著优势。特别地,在移动通信领域,基于深度学习的波束形成方法显著提升了大规模多输入多输出(Multiple input multiple output, MIMO)系统的计算效率和环境适应能力。在雷达信号处理中,深度学习模型有效增强了抗干扰性能和目标检测精度。在声学信号处理方面,深度神经网络实现了更精确的声源定位和噪声抑制。最后,本文探讨了网络架构创新、实时处理优化、鲁棒性增强、跨场景迁移学习、理论基础深化和新型应用拓展等未来研究方向。

    Abstract:

    With the increasing of array antennas and the growing complexity of anti-jamming, traditional adaptive beamforming methods often suffer from high computational complexity. Deep learning, with its powerful data-driven capabilities, offers a novel approach to overcoming the performance bottlenecks of traditional adaptive beamforming. This paper provides a systematic review on current studies and development trends of deep learning in array antenna beamforming. First, we revisit the evolution of traditional beamforming algorithms,ranging from the Howells-Applebaum adaptive processor to robust beamforming based on convex optimization. Second, we analyze the innovative applications of deep learning models such as convolutional neural networks (CNNs), recurrent neural networks (RNNs), and long short-term memory (LSTM) networks in beamforming. This review demonstrates that deep learning methods exhibit significant advantages in improving system performance due to their powerful nonlinear modeling capabilities, end-to-end optimization characteristics, and environmental adaptability. Specifically, in mobile communications, deep learning-based beamforming methods substantially enhance the computational efficiency and environmental adaptability of massive multiple input multiple output (MIMO) systems. In radar signal processing, deep learning models effectively improve anti-jamming performance and target detection accuracy. In acoustic signal processing, deep neural networks enable more precise sound source localization and noise suppression. Finally,this paper explores future research directions, including network architecture innovation, real-time processing optimization, robustness enhancement, cross-scenario transfer learning, theoretical foundation deepening, and novel application expansion.

    参考文献
    相似文献
    引证文献
引用本文

许峥,潘子豪,王宁,郭道省.基于深度学习的阵列天线自适应波束形成研究综述[J].数据采集与处理,2025,40(6):1382-1411

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-06-16
  • 最后修改日期:2025-10-08
  • 录用日期:
  • 在线发布日期: 2025-12-10