基于非负矩阵分解的EEG-TCNet运动想象分类
作者:
作者单位:

1.南京邮电大学电子与光学工程学院、柔性电子(未来技术)学院,南京210023;2.南京邮电大学射频集成与微组装技术国家地方联合工程实验室,南京 210023

作者简介:

通讯作者:

基金项目:

国家自然科学基金(61977039)。


EEG-TCNet for Motor Imagery Classification Based on Nonnegative Matrix Factorization
Author:
Affiliation:

1.College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.Nation-Local Joint Project Engineering Lab of RF Integration & Micropackage, Nanjing University of Posts and Telecommunications, Nanjing 210023, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对深度学习进行脑电信号(Electroencephalogram, EEG)的运动想象分类时,未利用通道特征研究通道之间相关性,以及没有充分发掘频率、时间和空间信息等问题,提出了一种基于非负矩阵分解(Nonnegative matrix factorization,NMF)的时间卷积网络(Temporal convolutional network,TCN)与紧凑型卷积神经网络EEGNet相结合的分类方法,记为NTEEGNet,以相对少量的参数来提高运动想象分类的性能。模型的NMF能更好地提取通道特征,且充分地利用了频率、时间和空间等信息;同时,在TCN的作用下,网络的感受野呈指数级增加,从而能在较少的参数下具有更强的特征提取能力。在BCI Competition Ⅳ 2a数据集上的实验结果表明,NTEEGNet的分类准确率达到83.99%,在EEG-TCNet的基础上提升了6.64%。

    Abstract:

    In response to the limitations of deep learning approaches in motor imagery classification using electroencephalogram (EEG) signals, such as the failure to explore inter-channel correlations and fully exploit frequency, temporal, and spatial information, this study proposes a classification method named NTEEGNet, which combines nonnegative matrix factorization (NMF) with temporal convolutional network (TCN) and one compacted convolutional neural network named EEGNet to enhance the performance of motor imagery classification with a relatively small number of parameters. The NMF component of the model effectively extracts channel features and fully utilizes frequency, temporal, and spatial information. Additionally,the network’s receptive field increases exponentially under the action of TCN, leading to stronger feature extraction capabilities with fewer parameters. Experimental results on the BCI Competition Ⅳ 2a dataset demonstrate that NTEEGNet can achieve an impressive classification accuracy of 83.99%, improved by 6.64% on the basis of EEG-TCNet.

    参考文献
    相似文献
    引证文献
引用本文

张学军,石宝明.基于非负矩阵分解的EEG-TCNet运动想象分类[J].数据采集与处理,2025,40(5):1361-1370

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-06-18
  • 最后修改日期:2024-09-24
  • 录用日期:
  • 在线发布日期: 2025-10-15