基于双向协同训练的PolSAR机场跑道半监督检测方法
作者:
作者单位:

中国民航大学智能信号与图像处理天津市重点实验室,天津 300300

作者简介:

通讯作者:

基金项目:


A Semi-supervised Detection Method for Airport Runways in PolSAR Images Based on Bidirectional Co-training
Author:
Affiliation:

Tianjin Key Lab for Advanced Signal Processing, Civil Aviation University of China, Tianjin 300300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    针对极化合成孔径雷达(Polarimetric synthetic aperture radar,PolSAR)图像跑道检测中标注数据稀缺引发的模型表征能力退化问题,提出一种双向协同训练的半监督师生模型,特别是设计了一个助教模块,通过构建蒸馏损失和反馈损失进行模型联合训练,突破传统单向蒸馏的层级限制。助教模块通过对比模型间的推理结果反馈尚未完全挖掘的特征信息,并利用同级特征图生成方向性特征向量,构建方向性损失辅助学生模型进行高效训练。在美国UAVSAR数据集上的实验结果表明,在标注数据有限的条件下,本文方法的跑道区域检测精度达到83.11%,相比于Unet、D-Unet和Unet++系列模型分别提高了15.63%,6.46%和17.25%。

    Abstract:

    A bidirectional co-training teacher-student framework is developed to mitigate the performance degradation caused by the scarcity of labeled polarimetric synthetic aperture radar (PolSAR) runway detection data. Within this framework, a teaching assistant module is constructed to integrate distillation loss and feedback loss. Underutilized feature representations are identified through a systematic comparison of model inferences and the generation of directional feature vectors. Experimental results demonstrate that a detection accuracy of 83.11% is achieved by the proposed method on the UAVSAR dataset, with improvements of 15.63%, 6.46%, and 17.25% being observed over the Unet, D-Unet, and Unet++ baselines, respectively.

    参考文献
    相似文献
    引证文献
引用本文

韩萍,张致峥,周杰龙.基于双向协同训练的PolSAR机场跑道半监督检测方法[J].数据采集与处理,2025,40(5):1348-1360

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2025-02-24
  • 最后修改日期:2025-05-27
  • 录用日期:
  • 在线发布日期: 2025-10-15