面向6G无线组网的基于GCN-LSTM网络的业务流量预测算法
作者:
作者单位:

东南大学移动通信全国重点实验室,南京210096

作者简介:

通讯作者:

基金项目:

国家重点研发计划(2024YFC3807900, 2024YFE0200701);国家自然科学基金(62171119);江苏省前沿引领技术基础研究重大项目(BK20222001)。


Service Traffic Prediction Algorithm Based on GCN-LSTM Network for 6G Wireless Networking
Author:
Affiliation:

National Mobile Communications Research Laboratory, Southeast University, Nanjing 210096, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    随着移动通信技术的飞速发展,无线网络面临着资源分配、流量分析和6G基站优化等多重挑战。对无线网络流量的有效预测,有助于合理地分配网络资源,为用户提供更稳定更高效的服务,保证网络性能。针对目前无线组网流量预测过程中由于时空特征挖掘不充分导致预测准确率较低的问题,开展了基于深度学习方法的智能业务流量预测算法的研究,设计了基于图卷积神经网络-长短期记忆网络(Graph convolutional network-Long short-term memory, GCN-LSTM)模型的预测算法。实验结果显示,该算法在实际网络应用中的准确率为84.71%,相较于其他基于深度学习的流量预测方法,具有显著优势,为6G网络资源的合理分配和高效服务提供了有力支持。

    Abstract:

    With the rapid development of mobile communication technology, wireless networks are facing multiple challenges, including resource allocation, traffic analysis, and 6G base station optimization. Effective prediction of wireless network traffic helps to allocate network resources reasonably and provides users with more stable and efficient services, ensuring network performance. To solve the problem of low prediction accuracy in the current wireless network traffic predictions due to insufficient mining of spatial and temporal features, this paper conducts research on intelligent traffic prediction algorithms based on deep learning methods, and proposes a prediction algorithm based on graph convolutional network-long short-term memory (GCN-LSTM) model. Experimental results show that the accuracy of this algorithm is 84.71% in actual network applications, which is superior to other deep learning-based traffic prediction methods, providing strong support for the rational allocation of 6G network resources and efficient service.

    参考文献
    相似文献
    引证文献
引用本文

孙诗蕾,徐澍,李春国,杨绿溪.面向6G无线组网的基于GCN-LSTM网络的业务流量预测算法[J].数据采集与处理,2025,40(5):1239-1249

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-05-03
  • 最后修改日期:2025-02-16
  • 录用日期:
  • 在线发布日期: 2025-10-15