面向语义增强的在线哈希方法
作者:
作者单位:

1.山东建筑大学计算机与人工智能学院,济南 250101;2.山东大学软件学院,济南 250101

作者简介:

通讯作者:

基金项目:


Online Semantic Enhancement Hashing
Author:
Affiliation:

1.School of Computer and Artificial Intelligence, Shandong Jianzhu University, Jinan 250101, China;2.School of Software, Shandong University, Jinan 250101, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    传统的基于批处理的哈希学习方法通常无法满足大规模流数据实时在线检索的需求。在线哈希学习其核心在于无需重复访问原始累积数据,只为新增数据学习哈希码,并实时更新哈希函数以适应新旧数据的变化。现有在线哈希方法仍面临诸多挑战,如类间关系挖掘不足导致的语义偏移和新旧数据关联不足导致的遗忘问题。针对这些问题,本文提出了一种新的在线哈希学习方法——面向语义增强的在线哈希(Online semantic enhancement hashing, OSEH)。该方法通过设计三重矩阵分解框架,深入挖掘特征和标签间的交互关系,以生成反映类间关系的细粒度标签矩阵。同时,结合标签嵌入和成对相似性保持技术,将增强的语义信息有效融入哈希学习过程,优化哈希码的生成和哈希函数的实时更新。在大规模检索数据集上的实验结果表明,本文所提方法显著提升了在线哈希学习的性能。

    Abstract:

    Batch-based hash learning methods are usually inadequate for real-time online retrieval of large-scale streaming data. Therefore, online hashing has emerged as a promising solution, enabling the learning of hash codes for new data without revisiting old data and adapting hash functions to coming data. However, several challenges persist, including semantic drift caused by insufficient exploration of inter-class relationships and data forgetting resulting from limited association between new and old data. To address these challenges, this paper proposes a novel supervised method named online semantic enhancement hashing (OSEH). It designs a triple matrix factorization framework, which mutually bridges the gap of original features and one-hot labels, thereafter constructing a fine-grained label matrix. Moreover, by seamlessly integrating label embedding and pairwise similarity, the proposed method effectively embeds enriched semantics into the process of hash learning, optimizing both hash code and function. Experimental evaluations conducted on benchmark datasets validate the effectiveness of the proposed method.

    参考文献
    相似文献
    引证文献
引用本文

赵志杰,康潇,张雪凝,王少华,刘兴波,聂秀山.面向语义增强的在线哈希方法[J].数据采集与处理,2025,40(4):1096-1106

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-05-29
  • 最后修改日期:2024-10-09
  • 录用日期:
  • 在线发布日期: 2025-08-15