基于多尺度特征融合预处理与深度稀疏网络的并行磁共振成像重建
作者:
作者单位:

昆明理工大学信息工程与自动化学院,昆明 650504

作者简介:

通讯作者:

基金项目:

云南省基础研究计划项目(202301AT070452)。


Parallel Magnetic Resonance Imaging Reconstruction Based on Multi-scale Feature Fusion Preprocessing and Deep Sparse Networks
Author:
Affiliation:

Faculty of Information Engineering and Automation, Kunming University of Science and Technology, Kunming 650504, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    磁共振成像(Magnetic resonance imaging, MRI)在医学诊断中具有关键作用,但过长的扫描时间可能会导致患者不适或产生运动伪影。并行成像技术和压缩感知理论表明,可通过对k空间数据进行欠采样从而提高扫描速度,其中并行MRI是一种通过利用多个接收线圈同时采集多个数据通道来加速成像过程的技术。深度学习凭借其强大的特征提取和模式识别能力,在欠采样MRI重建中展现出巨大的潜力。为克服现有技术的局限性(如需要自动校准信号、重建不稳定等),提出了一种创新的重建方法,旨在从欠采样的k空间数据中高效、准确地重建高质量的并行磁共振图像。该方法的核心骨架为深度稀疏网络,该网络通过将求解稀疏模型的迭代收缩阈值算法的迭代过程展开,转化为深度神经网络框架内的一系列可训练层。另外,还引入基于多尺度特征融合的自适应预处理模块,通过融合普通卷积与异型卷积核,进一步提升网络的稀疏表示能力。实验结果表明,相较于其他先进方法,本文提出的方法在多个数据集上均表现出更优的重建性能,包括更高的峰值信噪比和结构相似性指数,以及更低的高频误差范数。

    Abstract:

    Magnetic resonance imaging (MRI) plays a crucial role in medical diagnosis, but prolonged scanning times can cause patients discomfort and motion artifacts. Parallel imaging techniques and compressed sensing theory indicate that undersampling k-space data can enhance the scanning speed, where parallel MRI accelerates the imaging process by utilizing multiple receiving coils to simultaneously acquire data from multiple channels. Leveraging its powerful feature extraction and pattern recognition capabilities, deep learning demonstrates great potential in undersampled MRI reconstruction. To overcome the limitations of existing technologies (e.g., the need for automatic calibration signals, reconstruction instability), this paper proposes an innovative reconstruction method aimed at efficiently and accurately reconstructing high-quality parallel MRI images from undersampled k-space data. The core framework of this method is a deep sparse network that unfolds the iterative process of the iterative shrinkage-thresholding algorithm (ISTA) for solving sparse models into a series of trainable layers within a deep neural network framework. Additionally, this paper introduces an adaptive preprocessing module based on multi-scale feature fusion, which further enhances the sparse representation capability of the network by integrating standard convolutions with heterogeneous convolutional kernels. Experimental results demonstrate that, compared to other advanced methods, the proposed method exhibits superior reconstruction performance across multiple datasets, including higher peak signal-to-noise ratio (PSNR) and structural similarity (SSIM), as well as lower high-frequency error norms.

    参考文献
    相似文献
    引证文献
引用本文

薛磊,段继忠.基于多尺度特征融合预处理与深度稀疏网络的并行磁共振成像重建[J].数据采集与处理,2025,40(4):1082-1095

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-09-04
  • 最后修改日期:2024-11-16
  • 录用日期:
  • 在线发布日期: 2025-08-15