基于改进Transformer的持续血糖浓度预测模型
作者:
作者单位:

1.南京邮电大学计算机学院,南京210023;2.江苏省高性能计算与智能处理工程研究中心,南京 210023;3.江苏鱼跃医疗设备股份有限公司,镇江 212300

作者简介:

通讯作者:

基金项目:

江苏省科技支撑计划项目(BE2019740); 江苏省六大人才高峰高层次人才项目(RJFW-111);江苏鱼跃医疗设备股份有限公司科技项目(2022外017,2024外131);江苏省研究生实践创新计划项目(SJCX23_0274)。


Continuous Blood Glucose Concentration Prediction Model Based on Improved Transformer
Author:
Affiliation:

1.School of Computer Science, Nanjing University of Posts and Telecommunications, Nanjing 210023, China;2.Jiangsu HPC and Intelligent Processing Engineer Research Center, Nanjing 210023, China;3.Jiangsu Yuyue Medical Equipment and Supply Co., Ltd., Zhenjiang 212300, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    糖尿病是一种普遍存在的慢性疾病,做好血糖控制对糖尿病的预防具有重要作用。然而,持续血糖监测 (Continuous glucose monitoring,CGM)过程中数据的不确定性显著增加了血糖预测的难度。因此,提出一种新的基于深度学习的血糖浓度预测模型,旨在提高模型对传感器提取数据的适应性。在该模型中,堆叠式降噪自编码器(Stacked denoising auto encoder, SDAE)被嵌入Transformer编码器的结构中,实现对输入数据的重构去噪和特征提取;然后,采用混合位置编码策略替代原来的单一绝对位置编码嵌入,同时将轻量级解码器引入Transformer模型中,替代原始结构复杂的解码器,聚合来自不同层次的特征信息,同时获取局部和全局特征;最后,通过搭建的SDAE-改进Transformer网络对CGM数据序列并行化训练,更全面地捕捉数据中的时序模式和复杂关联,提高预测性能。实验结果表明,该模型相较于传统方法在血糖预测任务中取得了显著的性能提升,证实了其在处理CGM数据时的有效性和鲁棒性。

    Abstract:

    Diabetes is a common chronic disease, and it is very important to control blood sugar for preventing diabetes. However, the uncertainty of continuous glucose monitoring (CGM) data extraction significantly increases the difficulty of blood glucose prediction. Therefore, this article proposes a new deep learning based blood glucose concentration prediction model, aiming at improving the model’s adaptability to sensor extracted data. In this model, the stacked denoising auto encoder (SDAE) is embedded into the structure of the Transformer encoder to achieve reconstruction, denoising, and feature extraction of input data. Then, a mixed position encoding strategy is adopted to replace the original single absolute position encoding embedding, and a lightweight decoder is introduced into the Transformer model to replace the original structurally complex decoder, aggregate feature information from different levels, and obtain local and global features simultaneously. Finally, by constructing an improved SDAE-improved Transformer network for parallel training of CGM data sequences, temporal patterns and complex correlations in the data can be more comprehensively captured, thus improving predictive performance. Experimental results show that the model has achieved significant performance improvement in blood glucose prediction tasks compared to traditional methods, confirming its effectiveness and robustness in processing CGM data.

    参考文献
    相似文献
    引证文献
引用本文

徐鹤,杨丹丹,刘思行,季一木.基于改进Transformer的持续血糖浓度预测模型[J].数据采集与处理,2025,40(4):1065-1081

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-03-01
  • 最后修改日期:2024-05-01
  • 录用日期:
  • 在线发布日期: 2025-08-15