基于未校准眼动仪的无人机地面监控任务操作员分心检测
作者:
作者单位:

南京航空航天大学人工智能学院,南京 211106

作者简介:

通讯作者:

基金项目:

南京航空航天大学研究生科研与实践创新计划(xcxjh20231605)。


Operator Distraction Detection for UAV Ground Monitoring Missions Based on Uncalibrated Eye Tracker
Author:
Affiliation:

College of Artificial Intelligence, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
    摘要:

    在无人机地面监控任务中,操作员往往需要陷入长时间单调的等待,容易因分心造成失误。本文分析了校准对眼动信号的影响,并尝试在不进行校准的前提下使用眼动仪对操作员的分心状态进行评估。首先,模拟了多无人机协同搜索监督任务,构建包含22名被试的眼动数据集;接着提出一种与具体坐标位置无关的眼动速度矢量时序图方法,对未校准的眼动信号进行可视化定性分析;然后基于双均值聚类进行眼动行为检测,计算了速度相关与眼动行为相关的眼动特征;最后通过相关性分析与常见分类器上的分类验证,初步验证了使用未校准眼动仪进行分心状态检测的可行性。

    Abstract:

    In unmanned aerial vehicle(UAV) ground monitoring tasks, operators often need to be stuck in a long monotonous wait, which is easy to make mistakes due to distraction. This paper analyzes the effects of calibration on eye movement signals and attempts to evaluate operator distraction without calibration using an eye tracker. Firstly, the collaborative search and supervision task of multiple UAVs is simulated, and the eye movement data set containing 22 subjects is constructed. Then, an eye movement velocity vector time sequence diagram method independent of specific coordinate position is proposed to visualize and qualitatively analyze the uncalibrated eye movement signals, and then eye movement behavior detection is carried out based on double-mean clustering. Finally, the feasibility of using uncalibrated eye tracker for distraction state detection is preliminarily verified by correlation analysis and classification verification on common classifiers.

    参考文献
    相似文献
    引证文献
引用本文

徐天泽,孙茜茹,张道强,陈芳.基于未校准眼动仪的无人机地面监控任务操作员分心检测[J].数据采集与处理,2025,40(4):1055-1064

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
历史
  • 收稿日期:2024-02-01
  • 最后修改日期:2024-06-05
  • 录用日期:
  • 在线发布日期: 2025-08-15